Теория чисел на ШВБ
Ошибка.
Попробуйте повторить позже
Найдите все натуральные числа для которых число
является квадратом натурального числа.
Источники:
Подсказка 1
В точный квадрат все простые множители входят в чётных степенях. В нашей задачей рассматривают сумму, которая содержит степени двойки, так что можно рассмотреть именно степень вхождения двойки.
Подсказка 2
Попробуем провести разумный перебор. Допустим, самая маленькая степень вхождения двойки в слагаемые будет в 3*2ⁿ. Тогда она должна быть чётной, мы можем явно проверить эти случаи.
Подсказка 3
Пусть теперь n достаточно большое. Тогда можно вынести 2¹⁰, останется какая-то нечётная сумма, которая должна быть равна (2k+1)² для какого-то k.
Подсказка 4
После раскрытия скобок можно будет сократить на 4, а после разложить на множители. Остаётся заметить, что скобки, связанные с k, имеют разную чётность, а значит, одна из них гарантированно маленькая.
Рассмотрим несколько случаев
1) Пусть тогда
второй сомножитель — нечетное число,
- Если
то
не является квадратом натурального числа.
- Если
то
не является квадратом натурального числа.
- Если
то
не является квадратом натурального числа.
- Если
то
не является квадратом натурального числа.
2)
- Пусть
тогда
не является квадратом натурального числа.
- Пусть
тогда
не является квадратом натурального числа.
- Пусть
тогда
не является квадратом натурального числа.
3) Пусть тогда
и
Числа и
разной четности, следовательно, одно из них является делителем 3. Поскольку
, то либо
,
либо
13, 15
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!