Ортологичные треугольники: теоремы Карно и Штейнера
Ошибка.
Попробуйте повторить позже
В остроугольном треугольнике на высоте
выбрана произвольная точка
Точки
и
– середины сторон
и
соответственно. Перпендикуляр, опущенный из
на
пересекается с перпендикуляром, опущенным из
на
в точке
Докажите, что точка
равноудалена от точек
и
Обозначим через и
основания перпендикуляров, опущенных из
и
Достаточно показать, что
тогда по теореме Карно для треугольника
точка
будет лежать на серединном перпендикуляре к
что равносильно
требуемому. Выразим квадраты из равенства с помощью теоремы Пифагора для треугольников
и
:
Приведём подобные:
Домножим равенство на запишем
как
как
а квадраты
и
распишем с помощью формулы
медианы для треугольников
и
Приведём подобные и поделим на
Это равенство верно, поскольку
получили требуемое.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!