Тема . Остатки и сравнения по модулю

Лемма об уточнении показателя

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела остатки и сравнения по модулю
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#82679

Дано 101-значное число a  и произвольное натуральное число b  . Докажите, что найдется такое не более чем 102-значное число натуральное число c  , что любое число вида caaa...ab  - составное.

Источники: СПБГОР - 2024, 11.4 (см. www.pdmi.ras.ru)

Показать доказательство

Из признака делимости на 10101+1  (необходимо рассмотреть знакочередующуюся сумму блоков по 101 цифре с конца) следует, что числа в которых количество a  в записи отличается на четное число имеют одинаковые остатки при делении на  101
10   +1
Заметим, что  101
10   +1 ≡11 0  , а еще по лемме об уточнении показателя  101
10   +1  не делится на  2
11  , поэтому у   101
10  + 1  есть простой делитель p  отличный от 11
Достаточно сделать так, чтобы cb  и cab  делились на 11 и на p  соответственно. Такое c  существует и не превосходит         101
11× p≤ 10  + 1  по китайской теореме об остатках.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!