Тема . Остатки и сравнения по модулю

Лемма об уточнении показателя

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела остатки и сравнения по модулю
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#83958

Докажите, что не существует натурального a <1010  такого, что число a2022− 1  представимо в виде произведения 50  последовательных натуральных чисел.

Подсказки к задаче

Подсказка 1

Предположим, что такое a существует. Тогда, как легко видеть, разница квадрата числа a и 1 делится на 12. А как связаны степени вхождения 2 и 3 в разность квадрата a и 1 и в разность 2022-ой степени a и 1?

Подсказка 2

Верно! Они совпадают. Попробуем теперь изучить именно a²-1. На какую минимальную степень 2 и 3 оно должно делиться?

Подсказка 3

Конечно! Произведение 50 последовательных чисел делится на 50!, а по теореме Лежандра степень вхождения 2 в это число больше 40. Аналогично, степень вхождения 3 больше 20. Как теперь получить противоречие?

Показать доказательство

Предположим противное. Пусть искомое число a  существует. Произведение 50  натуральных чисел кратно 2,  следовательно a  нечетно, а значит  2
a − 1  кратно 4,  аналогично  2
a − 1  кратно 3.

В силу LTE,    2022         2                2
v2(a    − 1)= v2(a − 1)+ v2(1011) =v2(a − 1),  с другой стороны, произведение 50 натуральных чисел кратно 50!,  но в силу теоремы Лежандра

        [50]  [50]  [50]
v2(50!)=  2- + -4 +  -8 + ...> 40

следовательно, v2(a2− 1)> 40.  Аналогично, v3(a2− 1)> 20.

Таким образом, 1020 ≥ a2 > a2− 1 >240320,  то есть 100=102 > 2432 =16⋅9= 144,  тем самым получено противоречие.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!