Тема 27. Программирование

27.08 Макс/мин, кол-во пар, сумма/разность/произведение кратно/не кратно на расстоянии

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела программирование
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#42772

На вход подается число N  , а затем последовательность из N  натуральных чисел. Напишите программу, которая находит минимальную четную сумму двух элементов последовательности, стоящих на расстоянии не меньше 3  , то есть |i− j| ≥ 3  , где i ⁄= j  - номера элементов последовательности.

В первой строке файла находится число N  , в следующих N  строках даны элементы последовательности, целые положительные числа. Гарантируется, что искомую сумму получить можно.

В ответ укажите два числа через пробел: сначала искомое значение для файла A, затем для файла B.

Вложения к задаче
Показать ответ и решение

Переборное решение:

f = open(’20_A.txt’)

n = int(f.readline())
a = [int(i) for i in f]
ans = 10 ** 10

for i in range(n):
    for j in range(i + 1, n):
        if (a[i] + a[j]) % 2 == 0 and j - i >= 3:
            ans = min(ans, a[i] + a[j])

print(ans)

Эффективное решение:

f = open(’20_B.txt’)

n = int(f.readline())
a = [int(i) for i in f]
ans = 10 ** 10

k = 2  # Чему должна быть кратна сумма
s = 3  # Расстояние между элементами

# Список минимальных чисел с определенными остатками от деления на k
# Например, под индексом 1 хранится минимальное число с остатком 1
nums = [10 ** 10] * k

for i in range(s, n):
    # Считаем остаток от деления первого числа пары на k
    ost1 = a[i - s] % k
    # Обновляем минимум по остатку
    nums[ost1] = min(nums[ost1], a[i - s])

    # Считаем остаток, который должен быть у числа,
    # которое можно поставить в пару с текущим
    ost2 = (k - (a[i] % k)) % k
    # Обновляем ответ, если он меньше предыдущего
    ans = min(ans, a[i] + nums[ost2])

print(ans)

Ответ: 20 936

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!