Тема . ТурГор (Турнир Городов)

Сложный вариант весеннего тура Турнира Городов

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тургор (турнир городов)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76024

В классе 32  ученика. Было организовано 33  кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Докажите, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.

Источники: Турнир городов - 1985, весенний тур, сложный вариант, 9.3

Показать доказательство

Решим более общую задачу: пусть k  учеников занимаются в n  кружках (из трёх человек), k ≤n.  Предположим противное: каждые два кружка либо не пересекаются, либо пересекаются ровно по двум ученикам. Заметим, что если кружки K  и L  пересекаются с кружком M, то они пересекаются и между собой (их пересечения с M  имеют общий элемент). Значит, кружки разбиваются на группы пересекающихся между собой кружков. Каждой группе кружков соответствует группа учеников — объединение их составов. Эти группы также не пересекаются. Далее можно рассуждать по-разному.

Первый способ. Поскольку кружков больше, чем учеников, в какой-то группе это неравенство также сохраняется. Поставим в соответствие каждой паре кружков этой группы пару учеников, каждый из которых ходит ровно в один из этих кружков. Пар кружков больше, чем пар учеников, поэтому какой-то паре учеников {a,b} соответствует по крайней мере две пары кружков {a,c,d},{b,c,d} и {a,u,v},{b,u,v}.  Но кружки {a,c,d} и {b,u,v} не могут иметь двух общих учеников, поскольку пары {c,d} и {u,v} не совпадают. Противоречие.

Второй способ. Если в группе, содержащей некоторый кружок {a,b,c},  есть кружки, содержащие хотя бы две из трех пар {a,b},{a,c},{b,c},  скажем кружок {a,b,d} и кружок {a,c,e},  то d= e  (два последних кружка должны иметь двух общих членов). Единственный возможный кружок, пересекающийся с каждым из этих трех по двум элементам, — это {b,c,d}.  Таким образом, в такой группе не более четырёх кружков, куда ходят не менее четырёх учеников. Если же все кружки группы содержат только одну из трёх указанных пар (например, {a,b} ), то количество кружков в ней на 2  меньше количества всех учеников, их посещающих.

Итак, число кружков не превосходит числа учеников в классе.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!