Тема . ЮМШ (олимпиада Юношеской Математической Школы)

Теория чисел на ЮМШ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела юмш (олимпиада юношеской математической школы)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#108602

В этом сюжете разрешается использовать (без обоснования) так называемую малую теорему Ферма, гласящую, что для всякого целого числа a  и простого натурального числа p  справедливо соотношение:

   p
a− a  делится на p  без остатка.

_________________________________________________________________________________________________________________________________________________________________________________

Итак, p >2  — простое число. Маша должна понять, есть ли среди чисел

a1+b1,a2+b2,...,ap−1+ bp−1

значения, дающие одинаковые остатки от деления на p  .

1. Пусть a= 4,b= 9  . Докажите, что искомая пара найдётся.

2. Пусть a= 4,b= 3  . Докажите, что найдётся искомая пара, содержащая одно из крайних чисел.

3. Докажите, что искомая пара найдётся при a= 4,b= 7  .

4. Докажите, что искомая пара найдётся, если a= 2,b= 3  , а p−1
-2-  - простое.

Показать доказательство

1. По МТФ 4p−1+ 9p−1 ≡2  , но в то же время и  p−1   p−-1
4 2 + 9 2 = 2p−1+ 3p−1 ≡ 2  .

_________________________________________________________________________________________________________________________________________________________________________________

2. Если p= 3  , то всё ясно. Если 3(p−1)∕2 ≡ 1  , то остальное как в предыдущем пункте. Иначе же 3(p−1)∕2 ≡ −1  . Например, потому что из МТФ 3p− 1 ≡ 1  , значит,

(3p−21− 1) (3 p−21-+1):p

Тогда

 p−21+2   p−21 +2             1  1
4     + 3     ≡16− 9≡ 7= 4 + 3.

______________________________________________________________________________________________________________________________________________________

3. Случаи p≤7  разбираются руками. Дальше, аналогично предыдущим пунктам, если 7(p−1)∕2 ≡ 1  , то всё ясно. Иначе 7(p−1)∕2 ≡− 1  , а тогда для k =1,...,p−1
         2

 k   k   p−1+k   p−1+k   k   p−1+k     k
4 + 7 + 4 2   +7 2   ≡ 4 + 4 2   ≡2 ⋅4 .

Если бы остатки не повторялись, каждый бы встречался по разу, и тогда их сумма была бы равна 0 . Но тут, как мы видим, их сумма равна

                      p+1
2(4+ 42+ ...+4p−21) =2⋅ 4-2-− 4 ≡ 4⋅(4p−21− 2) ≡ 4⋅−1⁄≡ 0
                       4− 1    3            3

_________________________________________________________________________________________________________________________________________________________________________________

4. Предположим, что все остатки различны. Посмотрим на порядки 2 и 3 по модулю p  . (Порядок a  по модулю p  - минимальное натуральное k  такое, что ak− 1  (или числитель соответствующей несократимой дроби,если a  - дробь) кратно p  ; это k  мы будем обозначать ordp(a)  .) По МТФ они могут быть равны лишь 1,2,q,2q =p− 1  . Первые два случая проигнорируем, а случаи, когда хотя бы один из порядков равен q  , идентичны разобранным в пунктах 1 и 3 . Пусть порядки 2q  , в частности все остатки 2,22,...,2p−1  , различны (иначе, если 2a  и 2b  дают одинаковые остатки, то 2a− 2b  , а значит и 2a−b− 1  , кратно p  , но a− b< p− 1  ) и найдётся такое m  , что 2m = 3  . Отметим также, что в этом случае 2q =3q =−1  , так что если при некотором k  имеем 2k +3k = 0  , то и             (     )
2k±q +3±q = − 2k+ 3k = 0  , так что нарушается условие различности остатков. Поэтому в нашей последовательности встречаются по разу все ненулевые остатки.

_________________________________________________________________________________________________________________________________________________________________________________

Лемма 1. Пусть q >2  простое и k <q  таково, что для любого x= 1,2,...,q − 1  число x  и остаток kx  от деления на q  имеют разную чётность. Тогда k= q− 1  .

Следствие 1. Пусть q  простое, k  нечётное, k +1  не кратно 2q  . Тогда найдется l  такое, что y  обоих чисел l,kl  остатки по модулю 2q  заключены строго между 0  и q  .

Доказательство. Действительно, попробуем в качестве l  все числа от 1 до q − 1  . Пусть все пары l,kl  не подошли, т.е. все kl  имеют остатки по модулю 2q  , большие q  . Это значит, что чётность остатка kl  по модулю q  противоположна четности остатка kl  по модулю 2q  ( q  - нечётно), а она совпадает с четностью l  (т.к. k  нечётно), и мы попадаем в условия леммы.

_________________________________________________________________________________________________________________________________________________________________________________

Подберём по следствию 1 такое 0< l<q  , что − ml  при делении на 2q  имеет остаток меньше q  , назовём этот остаток r,r+ ml  делится на 2q  .

Теперь изучим сумму ∑p−1(2k+ 3k)r+l
 k=1  по модулю p  . С одной стороны, выражение в скобках пробегает все ненулевые остатки, а число r+ l<q +q  не кратно p − 1= 2q = ord(2)  , так что эту сумму можно посчитать как сумму геометрической прогрессии с неединичным знаменателем  r+l
2  , и она равна нулю.

Посчитаем эту же сумму другим способом. Раскрыв все скобки по биному, перегруппировав слагаемые и переставив множители в показателях степеней, мы получим сумму геометрических прогрессий вида  i  ∑ (i r+l−i)k
Cr+l   23  . Докажем, что ровно одна из этих прогрессий постоянна, а значит, ровно одно из указанных выражений ненулевое (тут надо отметить, что r,l< q  , так что r +l< 2q = p− 1  , поэтому появляющиеся биномиальные коэффициенты не кратны p  ). Это даст требуемое противоречие.

Действительно, при i= r  получаем, учитывая m
2 = 3  , что  rr+l−r  r+ml
23     = 2   = 1  , т.к. r+ ml  делится на 2q  . С другой стороны, если  r+sr+l−r−s
2  3       =1  , при некотором s∈ [−r,l]  то, деля, получаем  s−s
23  = 1  то есть     s
(2∕3) = 1  . Получаем, что ordp(2∕3)≤max(r,l)< q  , значит ordp(2∕3)  равен 1 или 2 , что может быть лишь при p= 5  ; этот случай проверяется непосредственно.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!