Тема . Задачи №13 из ЕГЭ прошлых лет

.00 №13 из ЕГЭ 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи №13 из егэ прошлых лет
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#89944

a) Решите уравнение        √-
sin 2x +  3sin (x − π)= 0.

б) Укажите корни этого уравнения, принадлежащие отрезку [        ]
 − 7π;−2π .
   2

Источники: ЕГЭ 2024, основная волна, Дальний восток

Показать ответ и решение

а)

sin 2x + √3sin(x− π)= 0
           √-
2sin xc(osx−  3 sin)x= 0
 sinx  2cosx− √3  =0
     ⌊      √ -
      cosx= --3
     ⌈       2
      sin x= 0
 ⌊     π-
 ⌈x = ±6 + 2πk, k ∈ ℤ
  x = πk, k ∈ ℤ

б) Отберем корни на тригонометрической окружности. Для этого отметим на ней дугу, соответствующую отрезку [        ]
 − 7π;−2π ,
   2  концы этой дуги и лежащие на ней точки серий решений из пункта а).

 71π3π
−−−−322π6π

Следовательно, на отрезке [  7π    ]
 − -2 ;−2π лежат точки − 3π;    13π
− -6-;  − 2π.

Ответ:

а) πk;  ± π-+ 2πk,
  6  k ∈ ℤ

 

б) − 3π;  − 13π;
   6  − 2π

Критерии оценки

Содержание критерия

Балл

Обоснованно получены верные ответы в обоих пунктах

2

Обоснованно получен верный ответ в пункте а)

1

ИЛИ

получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов: пункта а) и пункта б)

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!