Тема . Задачи №13 из ЕГЭ прошлых лет

.00 №13 из ЕГЭ 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи №13 из егэ прошлых лет
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#89948

a) Решите уравнение        √-
cos2x+  3sin(x +π) − 1 = 0.

б) Укажите корни этого уравнения, принадлежащие отрезку [     ]
 2π; 7π .
     2

Источники: ЕГЭ 2024, основная волна, Центр

Показать ответ и решение

а) По формуле приведения sin(x+ π)= − sinx.  Тогда имеем

  cos2x − √3-sinx − 1= 0
      2   √ -
1− 2sin x −√ 3sinx − 1= 0
   2sin2x +  3sinx = 0
      (       √ )
  sinx⋅⌊ 2 sinx+   3 = 0
       sinx= 0
     |⌈        √-
       sinx= − -3-
  ⌊            2
   x= πk, k ∈ℤ
  |||x= − π+ 2πk, k ∈ℤ
  |⌈     3
   x= − 2π+ 2πk, k ∈ ℤ
        3

б) Отберем корни на тригонометрической окружности. Для этого отметим на ней дугу, соответствующую отрезку [     ]
 2π; 7π ,
     2  концы этой дуги и лежащие на ней точки серий решений из пункта а).

71π0π
232ππ3-

Следовательно, на отрезке [     ]
    7π
 2π; 2 лежат точки 2π;  3π;  10π-
 3 .

Ответ:

а) πk;  − π-+ 2πk;
  3  − 2π +2πk,
   3  k ∈ ℤ

 

б) 2π;  3π;  10π-
 3

Критерии оценки

Содержание критерия

Балл

Обоснованно получены верные ответы в обоих пунктах

2

Обоснованно получен верный ответ в пункте а)

1

ИЛИ

получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов: пункта а) и пункта б)

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!