Тема . Задачи №13 из ЕГЭ прошлых лет

.00 №13 из ЕГЭ 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи №13 из егэ прошлых лет
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#91731

a) Решите уравнение         √-
2cos2x +  2sin(x+ π)− 2= 0.

б) Укажите корни этого уравнения, принадлежащие отрезку [     ]
 3π ;3π  .
  2

Источники: ЕГЭ 2024, пересдача, Центр

Показать ответ и решение

а)

2cos2 x+ √2sin(x +π) − 2 = 0
 (     2 )  √ -
2 1− sin x −√ -2sinx − 2 = 0
 2− 2sin2x −  2sinx − 2= 0
    2sin2x +√2-sinx = 0
       (       √-)
   sin x 2sinx +  2  =0
      ⌊
      | sinx= 0 √-
      ⌈ sinx= − -2-
 ⌊              2
  x = πk, k ∈ ℤ
 |⌈     π   π
  x = −2-± 4-+2πk, k ∈ ℤ

б) Отберем корни на тригонометрической окружности. Для этого отметим на ней дугу, соответствующую отрезку [     ]
 3π;3π ,
  2  концы этой дуги и лежащие на ней точки серий решений из пункта а).

3237ππππ
 24

Следовательно, на отрезке [ 3π   ]
  2-;3π лежат точки 7π
-4 ;  2π;  3π.

Ответ:

а) πk;  − π-± π+ 2πk,
  2   4  k ∈ℤ

б) 7π;
 4  2π;  3π

Критерии оценки

Содержание критерия

Балл

Обоснованно получены верные ответы в обоих пунктах

2

Обоснованно получен верный ответ в пункте а)

1

ИЛИ

получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов: пункта а) и пункта б)

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!