№15 из ЕГЭ 2020
Готовиться с нами - ЛЕГКО!
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Найдем ОДЗ неравенства:
Преобразуем исходное неравенство с учетом ОДЗ:
Значит, имеем систему, к первому неравенству которой применим метод рационализации:
Решим первое неравенство системы методом интервалов:
Отсюда получим
С учетом ОДЗ и оценки получаем окончательно
Содержание критерия | Балл |
Обоснованно получен верный ответ | 2 |
Обоснованно получен ответ, отличающийся от верного исключением/включением граничных точек, | 1 |
ИЛИ | |
получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
При этом в первом случае выставления 1 балла допускаются только ошибки
в строгости неравенства: «» вместо «
» или наоборот. Если в
ответ включено значение переменной, при котором одна из
частей неравенства не имеет смысла, то выставляется оценка «0
баллов».
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Выпишем ОДЗ:
Теперь вернемся к исходному неравенству:
Из ОДЗ , то есть можем поделить обе части неравенства на
. После деления знак неравенства сохранится
и получим:
Учтем ОДЗ:
Содержание критерия | Балл |
Обоснованно получен верный ответ | 2 |
Обоснованно получен ответ, отличающийся от верного исключением/включением граничных точек, | 1 |
ИЛИ | |
получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
При этом в первом случае выставления 1 балла допускаются только ошибки в строгости неравенства: «» вместо
«
» или наоборот. Если в ответ включено значение переменной, при котором одна из частей неравенства
не имеет смысла, то выставляется оценка «0 баллов».
Ошибка.
Попробуйте повторить позже
Решите неравенство
Источники:
Разложим левую часть неравенства на множители:
Обозначим тогда
и второй множитель примет вид
Вернемся к то есть выражение примет вид
Тогда для исходного неравенства имеем:
Воспользуемся методом рационализации для каждого из множителей:
Используем метод интервалов:
Содержание критерия | Балл |
Обоснованно получен верный ответ | 2 |
Обоснованно получен ответ, отличающийся от верного исключением/включением граничных точек, | 1 |
ИЛИ | |
получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения | |
Решение не соответствует ни одному из критериев, перечисленных выше | 0 |
Максимальный балл | 2 |
При этом в первом случае выставления 1 балла допускаются только ошибки
в строгости неравенства: «» вместо «
» или наоборот. Если в
ответ включено значение переменной, при котором одна из
частей неравенства не имеет смысла, то выставляется оценка «0
баллов».