Тема . Задачи №17 из ЕГЭ прошлых лет

.00 №17 из ЕГЭ 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи №17 из егэ прошлых лет
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90103

Окружность с центром в точке O  касается сторон угла с вершиной N  в точках A  и B.  Отрезок BC  — диаметр этой окружности.

a) Докажите, что ∠ANB  = 2∠ABC.

б) Найдите расстояние от точки N  до прямой AB,  если известно, что AC = 12  и AB  =52.

Источники: ЕГЭ 2024, основная волна, Сибирь

Показать ответ и решение

а) Центр окружности, вписанной в угол, лежит на его биссектрисе, так как он равноудален от сторон этого угла. Тогда NO  — биссектриса угла ANB.  Также центр O  лежит на диаметре BC.

Рассмотрим четырехугольник ANBO.  В нем           ∘
∠OAN  = 90 = ∠OBN,  так как радиусы OA  и OB,  проведенные в точку касания, перпендикулярны касательным NA  и NB  соответственно. Значит, сумма противоположных углов четырехугольника ANBO  равна    ∘
180 ,  следовательно, ANBO  — вписанный. Тогда ∠ANO  = ∠ABO  как углы, опирающиеся на одну дугу описанной около этого четырехугольника окружности.

Таким образом,

∠ANB  = 2∠ANO  = 2∠ABO  =2∠ABC.

PIC

б) В прямоугольном треугольнике ABC  имеем:

          AC   12   3
tg∠ABC  = AB-= 52 = 13.

Пусть H  — точка пересечения AB  и NO.  Заметим, что NA = NB  как отрезки касательных, проведенных к окружности из одной точки, а значит, треугольник ANB  — равнобедренный. Поэтому его биссектриса из вершины N  также является высотой и медианой, то есть ∠AHN  = 90∘ и AH  = BH = 26.

Тогда в прямоугольном треугольнике ANH  имеем:

AH-= tg∠ANH  = tg∠ABC  = -3
NH                       13
       13AH-  13⋅26   338
 NH  =   3  =   3   =  3 .
Ответ:

б) 338-
 3

Критерии оценки

Содержание критерия

Балл

Имеется верное доказательство утверждения пункта а) и обоснованно получен верный ответ в пункте б)

3

Обоснованно получен верный ответ в пункте б)

2

ИЛИ

имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки

Имеется верное доказательство утверждения пункта а),

1

ИЛИ

при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,

ИЛИ

обоснованно получен верный ответ в пункте б) с использованием утверждения пункта а), при этом пункт а) не выполнен

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!