.00 №18 из ЕГЭ 2024
Ошибка.
Попробуйте повторить позже
Найдите все значения параметра , при каждом из которых уравнение
имеет ровно один корень на отрезке
Источники:
Рассмотрим уравнение при всех :
Будем рассматривать параметр как переменную. Построим в системе координат множество решений системы. Если некоторая точка плоскости с координатами принадлежит этому множеству то для исходной задачи это означает, что если параметр принимает значение то будет одним из решений системы. Нас просят найти все такие значения параметра при каждом из которых ровно одна из точек вида , принадлежит множеству решений изображенному на плоскости Фактически это равносильно тому, что горизонтальная прямая имеет ровно одну точку пересечения с множеством .
Итак, в системе координат совокупность задает объединение двух прямых, первое неравенство — внутренность круга (без границы) с центром в и радиусом , а второе неравенство — вертикальную полосу-область (с границей) между прямыми и .
Решением системы является множество точек, принадлежащих прямым и лежащих внутри области, являющейся пересечением внутренности круга и полосы. Таким образом, множество — это отрезки (с выколотым концом ) и .
Найдем координаты всех важных точек:
Тогда ответ ; ; , то есть
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!