.00 №18 из ЕГЭ 2024
Ошибка.
Попробуйте повторить позже
Найдите все значения параметра при каждом из которых система
уравнений
имеет ровно два различных решения.
Источники:
Рассмотрим второе уравнение системы:
Заметим, что Тогда
Тогда система имеет вид
Решим задачу графически в системе координат где
— абсцисса,
—
ордината. Тогда первое уравнение задает пучок прямых, проходящих через точку
Второе уравнение при
задает часть гиперболы
и
при
задает эту же кривую, но отраженную относительно оси
Нам подходит только одно положение прямой, когда она касается гиперболы
при этом
Тогда уравнение
квадратное и имеет один корень, то есть его дискриминант равен нулю:
При получаем, что
Значит, такое значение параметра нам не подходит.
При получаем, что
Тогда
Значит, касание происходит в точке
Следовательно, нам подходит только
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!