.00 №18 из ЕГЭ 2024
Ошибка.
Попробуйте повторить позже
Найдите все значения параметра при каждом из которых система уравнений
имеет ровно одно решение.
Источники:
Рассмотрим второе уравнение системы:
Заметим, что Тогда
Тогда система имеет вид
Решим задачу графически в системе координат где — абсцисса, — ордината. Тогда первое уравнение задает пучок прямых, проходящих через точку Второе уравнение при задает часть гиперболы и при задает эту же кривую, но отраженную относительно оси
Пусть и — значения параметра соответствующие положениям (1) и (2). Тогда нам подходят или
Положение (1): прямая касается гиперболы Тогда уравнение
квадратное и имеет один корень, то есть его дискриминант равен нулю:
Положение (2): прямая горизонтальна, то есть
Следовательно, нам подходят значения параметра
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!