Тема . ДВИ по математике в МГУ

Оптимизация на ДВИ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела дви по математике в мгу
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#91957

Числа a,b,c  положительны и удовлетворяют соотношению

a+ b+c= 1.

Найдите наименьшее возможное значение выражения

1+a-⋅ 1+-b⋅ 1+-c
1− a 1− b 1− c

Источники: ДВИ - 2024, вариант 241, задача 6 (pk.math.msu.ru)

Показать ответ и решение

Заменим все единицы на a+ b+ c.  Тогда

(a-+b)+(a+-c) (b-+a)+-(b+-c) (c+a)+-(c+-b)
    b+c     ⋅    a+ c    ⋅    a+ b

Обозначим знаменатели новыми неизвестными: b+c= x,  a+ c= y,  a+ b=z.  Получается

(a+-b)b++-(ca+c)⋅ (b+-aa)++(cb+c)⋅ (c+-aa)++(bc+b)= y-+xz ⋅ x+y-z⋅ x+z-y

По неравенству о средних

y+ z ≥2√yz, x+z ≥2√xz, x +y ≥2√xy

Подставив эту оценку в полученное выражение, получаем

y+-z⋅ x+-z⋅ x-+y ≥ 8xyz-= 8
 x     y    z    xyz

При x= y = z  достигается равенство, так как в этом случае достигается равенство в неравенстве о средних. Сделав обратную замену, получаем b+c =a +c= a+ b,  что эквивалентно a= b= c.  Так как a +b+ c= 1,  то a= b= c= 1.
         3

Ответ: 8

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!