Тема 15. Алгебра логики – преобразование логических выражений

15.05 Отрезки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебра логики – преобразование логических выражений
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#37649

На числовой прямой даны два отрезка:

P = [3;18]  и Q = [12;32]

Укажите наибольшую длину промежутка А, при котором формула

((x ∈ P) ≡ (x ∈ Q)) → (x ∕∈ A)

тождественно истинна при любых значениях переменной x.

Показать ответ и решение

Решение руками

Изобразим известную часть на числовой прямой:

PIC

Заштрихованные области, это области, в которых известная часть истина. Вспомним таблицу истинности импликации: импликация дает ложь только если из 1 следует 0. Отсюда делаем вывод, что чтобы исходное выражение давало истину мы должны избегать такой ситуации.

Рассмотрим сначала не заштрихованные области – там тождество дает 0, тогда x∈∕A  может быть как 1 так и 0, то есть x  может как и принадлежать отрезку A  , так и не принадлежать.

Теперь рассмотрим заштрихованные области – так мождество дает 1, тогда x ∕∈ A  должно быть тоже 1, то есть эти       x  должны не принадлежать A  .

Из этих рассуждений делаем вывод, что отрезок A  может лежать в области [3;12]  или в области [18;32]  . Так как мы ищем отрезок максимальной длины, то A = [18;32]  . Его длина равна 32− 18 = 14  .

Решение программой

Идея заключается в переборе возможных концов отрезка A  (от 1 до 100) и проверке, что при всех значениях переменной x  (от 1 до 1000) исходное выражение даёт истину. Если во время проверки найдётся хотя бы одно значение x  , нарушающее условие, программа должна перейти к рассмотрению нового отрезка. После завершения перебора максимальная полученная длина отрезка A  и будет ответом.

Для реализации этой идеи необходимо задать отрезки P  и Q  при помощи функции range(), а также ввести переменную r  , равную 0: в неё будет записан наш ответ. Далее, создадим цикл for, необходимый для перебора значений начала отрезка A  . Внутри него, с помощью того же цикла, организуем перебор значений конца искомого отрезка. При каждой итерации будем создавать переменную-флаг, которая изначально равна 0, а затем задавать отрезок A  при помощи функции range(). Внутри нижнего цикла необходимо начать перебор значений переменной x  . Если выражение ложно хотя бы для одного x  , то флагу присваивается значение 1, а последний цикл останавливается. Если после перебора всех значений флаг остаётся равным 0, значит выражение тождественно истинно для текущего отрезка A  : присваиваем его длину r  , если она больше текущего значения данной переменной. В конце ответ выводится на экран.

p = range(3, 18 + 1)  # Задаём отрезок P
q = range(12, 32 + 1)  # Задаём отрезок Q
r = 0  # Длина отрезка A
for a1 in range(1, 100):  # Перебираем начало отрезка A
    for a2 in range(a1 + 1, 101):  # Перебираем конец отрезка A
        f = 0  # Флаг, указывающий на истинность выражения при любых значениях переменной x
        a = range(a1, a2)  # Задаём отрезок A
        for x in range(1, 1000):  # Перебираем значения переменной x
            # Если при текущем значении переменной x выражение даёт ложь (0), то
            if (((x in p) == (x in q)) <= (not (x in a))) == 0:
                f = 1  # меняем значение флага на 1,
                break  # останавливаем цикл и переходим к следующему отрезку A
        if f == 0:  # Если значение флага не менялось, значит текущий отрезок A подходит
            r = max(len(a), r)  # Сравниваем длину отрезка A с переменной r
print(r)  # Выводим ответ на экран

Ответ: 14

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!