Тема 15. Алгебра логики – преобразование логических выражений

15.05 Отрезки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебра логики – преобразование логических выражений
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#57876

На числовой прямой даны два отрезка: N  = [41,102]  и M  = [78,156]  . Укажите наименьшую возможную длину отрезка А для которого выражение

¬ (¬ (x ∈ A)∧ (x ∈ N ))∨(x ∈ M )

тождественно истинно (т.е. принимает значение 1) при любом значении переменной х?

Показать ответ и решение

Решение руками:

Упростим выражение, раскрыв отрицания:

(x ∈ A)∨ (x ∕∈ N )∨ (x ∈ M )

Найдем случаи, когда известная часть равна 0 и тогда мы узнаем какой должен быть отрезок А для того чтобы выражение было тождественно истинным. Для этого запишем её отрицание:

(x ∈ N )∧(x ∕∈ M )

Инверсия известной части дает 1 когда x  принадлежит отрезку N  и одновременно не принадлежит отрезку  M  . Это полуинтервал [41;78)  . Тогда отрезок A  должен «перекрыть» как минимум эту область. Так как мы ищем минимальную длину отрезка A  , то A = [41;78]  . Его длина равна 78− 41 = 37  .

Решение программой:

Идея заключается в переборе возможных концов отрезка A  (от 1 до 100) и проверке, что при всех значениях переменной x  (от 1 до 1000) исходное выражение даёт истину. Если во время проверки найдётся хотя бы одно значение x  , нарушающее условие, программа должна перейти к рассмотрению нового отрезка. После завершения перебора минимальная полученная длина отрезка A  и будет ответом.

Для реализации этой идеи необходимо задать отрезки N  и M  при помощи функции range(), а также ввести переменную r  , равную 10 ** 100: в неё будет записан наш ответ. Далее, создадим цикл for, необходимый для перебора значений начала отрезка A  . Внутри него, с помощью того же цикла, организуем перебор значений конца искомого отрезка. При каждой итерации будем создавать переменную-флаг, которая изначально равна 0, а затем задавать отрезок A  при помощи функции range(). Внутри нижнего цикла необходимо начать перебор значений переменной   x  . Если выражение ложно хотя бы для одного x  , то флагу присваивается значение 1, а последний цикл останавливается. Если после перебора всех значений флаг остаётся равным 0, значит выражение тождественно истинно для текущего отрезка A  : присваиваем его длину r  , если она меньше текущего значения данной переменной. В конце ответ выводится на экран.

n = range(41, 102 + 1)  # Задаём отрезок N
m = range(78, 156 + 1)  # Задаём отрезок M
r = 10 ** 100  # Длина отрезка A
for a1 in range(1, 100):  # Перебираем начало отрезка A
    for a2 in range(a1 + 1, 101):  # Перебираем конец отрезка A
        f = 0  # Флаг, указывающий на истинность выражения при любых значениях переменной x
        a = range(a1, a2)  # Задаём отрезок A
        for x in range(1, 1000):  # Перебираем значения переменной x
            # Если при текущем значении переменной x выражение даёт ложь (0), то
            if ((not ((not (x in a)) and (x in n))) or (x in m)) == 0:
                f = 1  # меняем значение флага на 1,
                break  # останавливаем цикл и переходим к следующему отрезку A
        if f == 0:  # Если значение флага не менялось, значит текущий отрезок A подходит
            r = min(len(a), r)  # Сравниваем длину отрезка A с переменной r
print(r)  # Выводим ответ на экран

Ответ: 37

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!