Тема 15. Алгебра логики – преобразование логических выражений

15.05 Отрезки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебра логики – преобразование логических выражений
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#57878

На числовой прямой даны два отрезка: N = [10,26]  и M  = [13,27]  . Отрезок A таков, что формула

((x ∈ N ) −→ (x ∈ A))∧ ((x ∕∈ M )∨ (x ∈ A))

тождественно истинна (т.е. принимает значение 1) при любом натуральном значении переменной х. В ответе укажите наименьшую длину отрезка A.

Показать ответ и решение

Решение аналитикой

Формула состоит из двух частей:

1. (x ∈ N ) − → (x ∈ A )

2. (x ∕∈ M ) ∨(x ∈ A )

Первая часть будет истинной в следующих случаях:

- Если x ∕∈ N  , то эта часть истинна.

- Если x ∈ N  , то необходимо, чтобы x ∈ A  .

Таким образом, для первой части необходимо, чтобы отрезок A  содержал все значения из отрезка N  = [10,26]  .

Вторая часть будет истинной, если:

- Если x ∕∈ M  , то эта часть истинна.

- Если x ∈ M  , то необходимо, чтобы x ∈ A  .

Таким образом, для второй части необходимо, чтобы отрезок A  содержал все значения из отрезка M  = [13,27]  .

Для того чтобы обе части формулы были истинны одновременно, отрезок A  должен содержать все значения из обоих отрезков N  и M  . Таким образом,

A = [10,27].

Длина отрезка A  рассчитывается по формуле:

L = b− a,

где a = 10  и b = 27  :

L = 27− 10 = 17.

Решение программой

Идея заключается в переборе возможных концов отрезка A  (от 1 до 100) и проверке, что при всех значениях переменной x  (от 1 до 1000) исходное выражение даёт истину. Если во время проверки найдётся хотя бы одно значение x  , нарушающее условие, программа должна перейти к рассмотрению нового отрезка. После завершения перебора минимальная полученная длина отрезка A  и будет ответом.

Для реализации этой идеи необходимо задать отрезки N  и M  при помощи функции range(), а также ввести переменную r  , равную 10 ** 100: в неё будет записан наш ответ. Далее, создадим цикл for, необходимый для перебора значений начала отрезка A  . Внутри него, с помощью того же цикла, организуем перебор значений конца искомого отрезка. При каждой итерации будем создавать переменную-флаг, которая изначально равна 0, а затем задавать отрезок A  при помощи функции range(). Внутри нижнего цикла необходимо начать перебор значений переменной   x  . Если выражение ложно хотя бы для одного x  , то флагу присваивается значение 1, а последний цикл останавливается. Если после перебора всех значений флаг остаётся равным 0, значит выражение тождественно истинно для текущего отрезка A  : присваиваем его длину r  , если она меньше текущего значения данной переменной. В конце ответ выводится на экран.

n = range(10, 26 + 1)  # Задаём отрезок N
m = range(13, 27 + 1)  # Задаём отрезок M
r = 10 ** 100  # Длина отрезка A
for a1 in range(1, 100):  # Перебираем начало отрезка A
    for a2 in range(a1 + 1, 101):  # Перебираем конец отрезка A
        f = 0  # Флаг, указывающий на истинность выражения при любых значениях переменной x
        a = range(a1, a2)  # Задаём отрезок A
        for x in range(1, 1000):  # Перебираем значения переменной x
            # Если при текущем значении переменной x выражение даёт ложь (0), то
            if (((x in n) <= (x in a)) and ((x not in m) or (x in a))) == 0:
                f = 1  # меняем значение флага на 1,
                break  # останавливаем цикл и переходим к следующему отрезку A
        if f == 0:  # Если значение флага не менялось, значит текущий отрезок A подходит
            r = min(len(a) - 1, r)  # Сравниваем длину отрезка A с переменной r
print(r)  # Выводим ответ на экран


Ответ: 17

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!