Тема 15. Алгебра логики – преобразование логических выражений

15.05 Отрезки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебра логики – преобразование логических выражений
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#62997

На числовой прямой даны два отрезка: P = [15;39]  и Q = [44;57]  . Укажите наибольшую возможную длину такого отрезка A  , что формула

((x ∈ A) → (x ∈ P))∨ (x ∈ Q )

тождественно истинна, то есть принимает значение 1 при любом значении переменной   .

Показать ответ и решение

Решение руками:

Упростим выражение, раскрыв импликацию:

(x ∕∈ A) ∨(x ∈ P )∨ (x ∈ Q)

Воспользуемся методом сковородки (отрицания известной части) и найдем случаи, когда известная часть равна 0. Тогда мы узнаем какой должен быть отрезок А для того, чтобы выражение было тождественно истинным.

Скажем, что (x ∈ P )∨(x ∈ Q)  должно быть равно 0. Это выполняется тогда, когда (x ∕∈ P)∧ (x∈∕Q )  равно 1. Это происходит, когда x  принадлежит интервалам: (− ∞; 15) ∪(39;44)∪ (57;∞ )  (красная область на рисунке).

PIC

Но отрезок A  должен быть таким, чтобы x  ему не пренадлежал. Это отрезки P  или Q  . Наибольшая длина отрезка A  будет достигаться, когда он равен P  , то есть [15;39]  . Его длина 39− 15 = 24  .

Решение программой:

Идея заключается в переборе возможных концов отрезка A  (от 1 до 100) и проверке, что при всех значениях переменной x  (от 1 до 1000) исходное выражение даёт истину. Если во время проверки найдётся хотя бы одно значение x  , нарушающее условие, программа должна перейти к рассмотрению нового отрезка. После завершения перебора максимальная полученная длина отрезка A  и будет ответом.

Для реализации этой идеи необходимо задать отрезки P  и Q  при помощи функции range(), а также ввести переменную r  , равную 0: в неё будет записан наш ответ. Далее, создадим цикл for, необходимый для перебора значений начала отрезка A  . Внутри него, с помощью того же цикла, организуем перебор значений конца искомого отрезка. При каждой итерации будем создавать переменную-флаг, которая изначально равна 0, а затем задавать отрезок A  при помощи функции range(). Внутри нижнего цикла необходимо начать перебор значений переменной   x  . Если выражение ложно хотя бы для одного x  , то флагу присваивается значение 1, а последний цикл останавливается. Если после перебора всех значений флаг остаётся равным 0, значит выражение тождественно истинно для текущего отрезка A  : присваиваем его длину r  , если она больше текущего значения данной переменной. В конце ответ выводится на экран.

p = range(15, 39 + 1)  # Задаём отрезок P
q = range(44, 57 + 1)  # Задаём отрезок Q
r = 0  # Длина отрезка A
for a1 in range(1, 100):  # Перебираем начало отрезка A
    for a2 in range(a1 + 1, 101):  # Перебираем конец отрезка A
        f = 0  # Флаг, указывающий на истинность выражения при любых значениях переменной x
        a = range(a1, a2)  # Задаём отрезок A
        for x in range(1, 1000):  # Перебираем значения переменной x
            # Если при текущем значении переменной x выражение даёт ложь (0), то
            if (((x in a) <= (x in p)) or (x in q)) == 0:
                f = 1  # меняем значение флага на 1,
                break  # останавливаем цикл и переходим к следующему отрезку A
        if f == 0:  # Если значение флага не менялось, значит текущий отрезок A подходит
            r = max(len(a) - 1, r)  # Сравниваем длину отрезка A с переменной r
print(r)  # Выводим ответ на экран

Ответ: 24

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!