Тема . Тождественные преобразования

Преобразования с целой и дробной частями

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тождественные преобразования
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#58009

Вычислите

[∘ ---√----- ∘ ---√----]
   45+  2022−   45 −  2022 ,

где [t]  — это целая часть числа t  (т.е. наибольшее целое число, не превосходящее t  ).

Источники: Ломоносов-2023, 11.1 (см. olymp.msu.ru)

Подсказки к задаче

Подсказка 1

Давайте обозначим наше выражение внутри скобок за t. Тут какие-то страшные корни, давайте избавимся от них с помощью возведения t в квадрат!

Подсказка 2

t² = 90 - 2√3. Стоит вспомнить, что 1 < √3 < 2, и, получив из этого оценку на t², легко найти целую часть от t!

Показать ответ и решение

Обозначим

   ∘----√----  ∘----√----
t=  45+  2022−  45−  2022.

Чтобы не возиться с корнями, попробуем оценить квадрат этого выражения, тем более он довольно симпатичный:

 2     √ ----   ∘ ---√-----∘ ---√-----    √ ----
t = 45+  2022− 2⋅  45 +  2022⋅  45 −  2022+ 45−  2022=

       ∘--2-----      √ -
= 90− 2 45 − 2022= 90− 2 3

Из очевидного 1< √3< 2  получаем 90− 4< t2 < 90− 2  . Откуда, конечно, 92 = 81< t2 < 100= 102,  так что целая часть числа  t  равна 9.  Здесь, однако, важно сказать, что t> 0  , иначе наше решение не исключало бы, что целая часть могла быть равна − 10  . Но в силу 45+√2022> 45− √2022-  следует очевидность (которую всё же надо упомянуть!) неравенства t> 0.

Ответ:

 9

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!