Тема . №24. Геометрические задачи на доказательство

.02 Задачи №24 из сборника И.В. Ященко

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела №24. геометрические задачи на доказательство
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#41521

Внутри параллелограмма ABCD  выбрали произвольную точку F.  Докажите, что сумма площадей треугольников BF C  и AF D  равна половине площади параллелограмма.

Источники: Банк ФИПИ, Сборник И.В. Ященко 2024, Вариант 17

Показать доказательство

Проведем высоту параллелограмма KL,  проходящую через точку F.  Тогда KL  ⊥BC  и KL ⊥ AD.

В параллелограмме противоположные стороны равны, поэтому пусть BC  =AD  = a.  Пусть KL = h,  а KF  =x.  Тогда FL = h− x.

aaxhABCDFKL − x

По формуле площади треугольника

pict

Тогда

S    + S   =  1ax+ 1a(h− x)=
 BFC    AFD   2    2
       a             ah
     = 2 ⋅(x +h − x) = 2 .

С другой стороны, по формуле площади параллелограмма

SABCD = AD  ⋅KL  = ah.

Значит,

SBFC + SAFD = ah = 1SABCD.
               2   2
Критерии оценки

Критерии оценивания выполнения задания

Баллы

Доказательство верное, все шаги обоснованы

2

Доказательство в целом верное, но содержит неточности

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!