Тема . №24. Геометрические задачи на доказательство

.02 Задачи №24 из сборника И.В. Ященко

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела №24. геометрические задачи на доказательство
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#42486

Окружности с центрами в точках P  и Q  не имеют общих точек, и ни одна из них не лежит внутри другой. Внутренняя общая касательная к этим окружностям делит отрезок, соединяющий их центры, в отношении m :n  . Докажите, что диаметры этих окружностей относятся как m :n.

Источники: Сборник И.В. Ященко 2024 г. Вариант 15

Показать доказательство

Пусть P  — центр первой окружности, Q  — центр второй, A  и B  — точки касания общей касательной с первой и второй окружностями соответственно. Пусть O  — точка пересечения P Q  и AB.  Тогда по условию P O :OQ = m :n.

Проведем радиусы PA  и QB.  Так как AB  — общая касательная к окружностиям, то

∠P AB = ∠QBA  = 90∘

PIC

Заметим, что ∠P OA = ∠QOB  как вертикальные. Тогда треугольники POA  и QOB  подобны по двум углам, следовательно,

PA-= P-O = m-
QB   OQ    n

Диаметр любой окружности равен ее удвоенному радиусу, то есть

d1 =2r1 = 2P A и d2 =2r2 = 2QB

Тогда

d1 = 2PA-= P-A = m-
d2   2QB    QB    n
Критерии оценки

Критерии оценивания выполнения задания

Баллы

Доказательство верное, все шаги обоснованы

2

Доказательство в целом верное, но содержит неточности

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!