Тема . №24. Геометрические задачи на доказательство

.02 Задачи №24 из сборника И.В. Ященко

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела №24. геометрические задачи на доказательство
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#50564

В треугольнике ABC  с тупым углом BAC  проведены высоты BB1  и CC1.  Докажите, что треугольники AB1C1  и ABC  подобны.

Источники: Банк ФИПИ | Сборник И.В. Ященко 2025 г. Вариант 3

Показать доказательство

По условию BB1  и CC1  — высоты тупоугольного треугольника ABC.  Тогда

∠CB  B = 90∘ = ∠CC B.
    1            1

Рассмотрим четырёхугольник BCC1B1.  В нём углы CB1B  и CC1B  равны и опираются на один и тот же отрезок BC,  следовательно, около четырёхугольника BCC1B1  можно описать окружность.

BCBC11A

Тогда ∠BC1B1  = ∠BCB1  как вписанные, опирающиеся на одну дугу BB  .
   1

Углы B1AC1  и BAC  равны как вертикальные. Тогда треугольники AB1C1  и ABC  подобны по двум углам.

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Доказательство верное, все шаги обоснованы

2

Доказательство в целом верное, но содержит неточности

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!