Тема . №24. Геометрические задачи на доказательство

.02 Задачи №24 из сборника И.В. Ященко

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела №24. геометрические задачи на доказательство
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#93962

Основания BC  и AD  трапеции ABCD  равны соответственно 2 и 32, BD = 8.  Докажите, что треугольники CBD  и BDA  подобны.

Источники: Банк ФИПИ | Сборник И.В. Ященко 2025 г. Вариант 8

Показать доказательство

По условию BC  и AD  — основания трапеции ABCD.  Тогда BC ∥AD.

ABCD2832

Рассмотрим треугольники CBD  и BDA.  В них:

1.
∠CBD  = ∠BDA  как внутренние накрест лежащие углы, образованные параллельными прямыми BC  и AD  и секущей BD.
2.
BC- = 2= -8 = BD-.
BD    8  32   AD

Следовательно, треугольники CBD  и BDA  подобны по двум пропорциональным сторонам и углу между ними.

Критерии оценки

Критерии оценивания выполнения задания

Баллы

Доказательство верное, все шаги обоснованы

2

Доказательство в целом верное, но содержит неточности

1

Решение не соответствует ни одному из критериев, перечисленных выше

0

Максимальный балл

2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!