Планиметрия на Газпроме
Ошибка.
Попробуйте повторить позже
Две окружности касаются внешним образом в точке Найти радиусы окружностей, если хорды, соединяющие точку
с точками
касания одной из общих внешних касательных, равны
см и
см.
Подсказка 1
Давайте разберемся, что мы можем найти на картинке. Например, можем ли мы найти BC?
Подсказка 2
Да, можем. Так как, △BAC - прямоугольный, то BC = 10. Дальше воспользуемся свойством высот в прямоугольном треугольнике! Какие подобные треугольники есть на рисунке?
Подсказка 3
Верно, △BAC ∼ △O₂MC и △BAC ∼ △O₁NB (по 2 углам). Тогда, через подобие мы можем выразить радиус каждой из окружностей(и да, не забудьте, что если радиус перпендикулярен хорде, то он делит её пополам)
Пусть и
— центры окружностей,
и
— указанные точки касания (
). Поскольку треугольник
прямоугольный (угол
— прямой), то
Пусть — основание перпендикуляра, опущенного из
на
Из подобия треугольников и
находим, что
Аналогично находим, что
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!