Тема Высшая проба - задания по годам

Высшая проба 2022

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела высшая проба - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#74778

В этой задаче запись x modn,  где x  — целое а n  — натуральное, обозначает такое целое число y  от 0 до n− 1,  что x− y  делится на n.

Существует ли такая функция f,  определенная для целых значений аргумента и принимающая целые значения, что при любом целом x  верно

 (( 2  )     )  (   2  )
f  x +1 mod 7 = f(x) +1 mod 11 ?

Источники: Высшая проба - 2022, 11.1 (см. olymp.hse.ru)

Показать ответ и решение

Стандартным ходом при решении задач на функциональные уравнения является подставить какое-то значение переменной, при котором два часто возникающих и не равных друг-другу тождественно выражения оказываются равны, и посмотреть, какие следствия из этого удастся вывести. Применительно к данной задаче на роль такой подстановки простится значение x0,  для которого выполнялось бы      2
x0 = x0+ 1mod 7.

Задумаемся, а существует ли такое x0?  Условие равносильно квадратному уравнению в остатках(в этом абзаце все сравнимости по модулю 7):

x20− x0 +1 ≡0

    1±√ −3-  1±√ −3+-7  {3 − 1}  {3 +7 −1 +7}
x0 ≡--2----≡ ----2----≡  2,-2- ≡  --2-,--2--  ≡ {5,3}

Или можно было просто перебором остатков, благо их всего 7, убедиться, что любой из 3 и 5 подходят.

Что же нам дает равенство 3 =32+ 1mod 7?  Просится от обоих частей взять функцию f,  а затем воспользоваться условием задачи. Имеем:

f(3)=f ((32+ 1)mod7)= (f(3)2+ 1) mod11

Чтобы подчеркнуть полученное, обозначим f(3)= y  и выбросим среднюю часть:

   ( 2  )
y = y + 1 mod11

Отсюда следует (далее все сравнимости будут по модулю 11)

y2− y+ 1≡ 0

Отметим что это именно следствие, а не равносильность. Выясним, имеет ли сравнимость решения, действуя стандартно      √ --
y ≡ 1±-2−3.  А извлекается ли квадратный корень из -3 по модулю 11? Заметим что 12 ≡ (−1)2 ≡1,22 ≡(−2)2 ≡ 4,32 ≡ (− 3)2 ≡ 9,  42 ≡ (− 4)2 ≡ 5  и 52 ≡ (−5)2 ≡3.  Мы перебрали все остатки, среди квадратов не нашлось -3, значит корень не извлекается, значит уравнение y2− y+ 1≡ 0  не имеет решений.

Итак, требуемой функции f  не существует.

Ответ: нет

Ошибка.
Попробуйте повторить позже

Задача 2#74779

Вася пришел в казино, имея один вшэ-коин (единственную в мире виртуальную валюту, которую можно делить на любые части; например, можно поставить на кон π-
10  вшэ-коина). В казино игрокам предлагается делать ставки на цвет шара, который будет вытащен из ящика. Фиксировано число p,  причем 1 <p <2.  Если цвет вытащенного шара совпадает с тем, на который игрок поставил x  денег — игрок получит назад px  денег, если не совпадает — не получит ничего. Для ставок в каждом раунде можно использовать не только деньги, имевшиеся к началу игры, но и выигрыши прошлых раундов. Перед началом игры Вася смог подсмотреть, что в ящик положили 3 черных и 3 красных шара (других шаров нет), сыгранные шары обратно в ящик не возвращаются, игра происходит пока ящик не опустеет. Какую максимальную сумму Вася может гарантированно иметь к концу розыгрыша?

Источники: Высшая проба - 2022, 11.2 (см. olymp.hse.ru)

Показать ответ и решение

Заполним табличку: в клетке (i,j)  запишем, на какое максимальное число Вася может гарантированно к концу игры умножить имеющуюся у него сейчас сумму, если сейчас в ящике осталось i  черных и j  красных шаров. Легко понять, что стоит с краю: если уже не осталось черных шаров, то Вася может смело ставить все деньги на красный шар, соответственно увеличивая капитал в p  раз за каждый из оставшихся красных шаров. Аналогично если не осталось красных. Это и отмечено в таблице ниже.

PIC

Теперь поймем, что должно стоять в клетке (i,j)  если мы уже знаем, что в клетках (i− 1,j)  и (i,j− 1)  стоят числа x  и y  соответственно. Пусть для определенности x≤ y.

Во-первых, в оптимальной стратегии Вася не должен делать положительные ставки на оба исхода. В самом деле, пусть по своей стратегии он должен сейчас поставить суммы a  и b,  причем a ≥b >0.  Тогда пусть вместо этого он поставит a− b  денег на тот исход, на который должен был ставить a,  и на 2b  больше денег оставит не поставленными. Тогда при любом исходе он будет иметь на (2− p)b  денег больше, чем имел бы, если бы ставил a  и b.

Теперь поймём, сколько же Вася должен ставить. Ставить он должен на тот цвет, выпадание которого приводит в клетку с числом   x  (  напомним, x ≤y),  в противном случае если этот цвет выпадет, Вася не сможет увеличить свой капитал более чем в x  раз, а мы строим стратегию лучше. Для определенности обозначим количество Васиных денег через D  и пусть он поставит 𝜀D  денег на цвет, выпадение которого приводит в клетку с числом x.  Тогда если выпал этот цвет Вася оказался в этой клетке имея (1+ (p− 1)𝜀)D  денег, соответственно закончит игру, имея не менее (1+ (p− 1)𝜀)xD  денег (и не может гарантированно иметь больше). Если же выпал цвет, приводящий в клетку с числом y,  Вася попал туда, имея (1− 𝜀)D  денег, значит закончит игру, имея не меньше (1− 𝜀)yD  денег (и не может гарантированно иметь больше). Итак, гарантированный минимум при этой стратегии есть min((1+ (p − 1)𝜀)xD,(1 − 𝜀)yD ).  Поскольку первая из функций под минимумом возрастающая по 𝜀  , а вторая — убывающая, максимум минимума достигается при значении 𝜀,  для которого функции принимают одно значение. Имеем

(1+(p− 1)𝜀)xD = (1− 𝜀)yD

𝜀 = --y−-x---
    y+(p− 1)x

То есть

(1+ (p − 1)𝜀)xD = (1− 𝜀)yD )=---pxy---D
                         y+(p− 1)x

Иными словами, в интересующей нас клетке должно стоять число

---pxy---
y+ (p− 1)x

Пользуясь этой формулой и значениями в клетках на краях, заполним всю табличку:

PIC

Ответ:

----p5---
5p2− 6p+2

Ошибка.
Попробуйте повторить позже

Задача 3#74780

Гипотенуза AB  прямоугольного треугольника ABC  касается вписанной и соответствующей вневписанной окружностей в точках T ,T
 1 2  соответственно. Окружность, проходящая через середины сторон, касается этих же окружностей в точках S1,S2  соответственно. Докажите, что ∠S1CT1 = ∠S2CT2.

Источники: Высшая проба - 2022, 11.3 (см. olymp.hse.ru)

Показать доказательство

Введём обозначения для длин сторон: BC = a,AC = b,AB = c.

PIC

Сделаем инверсию с центром C  и радиусом    ∘ ---
R=   12ab  с симметрией относительно биссектрисы угла C.

Середины сторон прямоугольного треугольника и вершина его прямого угла образуют прямоугольник, значит, все четыре на одной окружности. Значит, при инверсии образ окружности — прямая. Легко посчитать, что эта прямая отсекает от лучей CA  и CB  отрезки длины a  и b  соответственно, то есть симметрична AB  относительно биссектрисы угла A.  Поэтому гипотенуза и окружность Эйлера треугольника переходят друг в друга.

Касательная из C  к вписанной окружности равна её радиусу r,  а касательная из C  к вневписанной окружности равна полупериметру p.  Таким образом, их произведение pr= S(ABC)  — площади треугольника ABC.  Итак, pr= R2.  Поэтому вписанная и вневписанная окружности треугольника ABC  переходят друг в друга.

Следовательно, T1  переходит в S2,  а T2  переходит в S1.  Угол ∠S1CT1  переходит в угол ∠S2CT2,  значит, они равны.

Ошибка.
Попробуйте повторить позже

Задача 4#74781

Найдите все действительные числа d,  для которых существуют многочлены от одной переменной P  и Q,  такие что равенство

P(x)  P(x+ d)    1
Q(x) − Q(x+-d) = x(x-+1)

выполняется при всех значениях x  , кроме конечного числа (есть лишь конечное множество значений x  , для которых равенство не выполняется).

Источники: Высшая проба - 2022, 11.4 (см. olymp.hse.ru)

Показать ответ и решение

Сразу заметим, что при d= 0  равенство из условия невозможно, так что далее мы везде считаем, что d⁄= 0  даже когда не напоминаем об этом явно.

Предположим, что такие многочлены P  и Q  нашлись. Тогда можно считать, что они взаимнопросты (иначе поделим оба на общий множитель — новая пара тоже удовлетворяет условию), и у Q  старший коэффициент равен 1 (домножим P  и Q  на константу , чтобы старший коэффициент стал равен 1). Введем обозначение для разложения Q  на линейные множители (естественно, воспользовавшись существованием такого разложения в комплексных числах):

Q(x)=(x− α1)n1(x− α2)n2⋅⋅⋅(x− αk)nk

Для комплексного числа α  множество чисел вида α +md,  где m ∈ℤ  , будем называть цепью числа α.

______________________________________________________________________________________________________________________________________________________

Ключевое утверждение:

Если α  — корень Q,  то числа 0 и 1 принадлежат цепи α.

______________________________________________________________________________________________________________________________________________________

Доказательство.

Пусть α  — корень Q,  тогда обозначим через m− и m+  такие минимальное и максимальное значения m,  при которых α+ md  является корнем Q.  Заметим, что m− и m+  определены корректно: множество значений m  не пусто (поскольку 0 подходит) и конечно, поскольку у Q  конечное число корней (первое место, в котором важно, что d⁄= 0  ). Тогда пусть не оба числа 0 и 1 лежат в цепи α.  Тогда одно из двух чисел α+ (m− − 1)d  и α+ m+d  не является ни 0 ни 1 (второе место: нам важно, что α +(m − − 1)d  и α +m+d  — два разных числа). Рассмотрим эти два случая.

Пусть α+ m+d= αi  — не равно ни 0 ни 1. Посмотрим на равенство из условия

P-(x)− P(x+-d)= ---1-- = 1− -1--
Q (x)  Q(x+ d)  x(x+ 1)   x  x+ 1

и разложим левую часть на простейшие дроби:

P(x)= P (x)+ --P1(x)-- +--P2(x)- +⋅⋅⋅+--Pk(x)- ,
Q (x)   0    (x− α1)n1  (x− α2)n2      (x− αk)nk

где степень Pi(x)  меньше ni  при 1 ≤i≤ k,  причем Pi ⁄= 0.

Поскольку αi  — корень Q,  в разложение PQ((xx))  входит член со знаменателем (x − αi)ni  и ненулевым числителем. Но αi  — не корень Q (x+ d),  иначе α + d= α+ (m  +1)d
 i          +  было бы корнем Q(x),  что противоречило бы максимальности m
 +  . Тогда член со знаменателем      ni
(x− αi) не входит в разложение P(x+d)
Q(x+d),  значит члену с таким знаменателем слева не с чем сократиться — но он не входит в правую часть — противоречие.

_________________________________________________________________________________________________________________________________________________________________________________

Итак, мы доказали, что если у многочлена Q  есть комплексные корни, то в цепь этого корня входят числа 0 и 1, то есть выполняется равенство    -1
d= m  для какого-то целого m  . Если же у Q  нет комплексных корней, то он - ненулевая константа, то есть P(x)-
Q(x)  и P (x+d)
Q-(x+d) — многочлены, тогда их разность не может равняться x(x1+1).

Осталось показать, что все значения вида d= 1m,  где m ∈ ℤ,m ⁄= 0  подходят. Для m >0  достаточно взять функцию

1+ --11-+ --12-+ ⋅⋅⋅+ ---1m−1-
x  x+ m   x+ m       x+  m

и привести сумму к общему знаменателю, числитель взять в качестве P,  а знаменатель — Q.  Для m <0  то же самое сделать с суммой

-−1-  ---−1---  --−-1---      -−-1--
x+ 1 + x+ −m−−m1-+ x+ −m−−m2-+⋅⋅⋅+ x+ −1m
Ответ:

 d =-1,
   m  где m ∈ℤ,m ⁄= 0

Ошибка.
Попробуйте повторить позже

Задача 5#74782

Через X (α)  будем обозначать точку с координатами (cosα,sinα )  (все такие лежат на окружности радиуса 1 с центром в начале координат). Выбрали произвольный угол ϕ  и провели хорды                    (   2 )
P (ϕ)P(2022ϕ),P(2022ϕ)P 2022ϕ ,...  (на шаге номер n  проводится хорда   (   n−1)      n )
P 2022  ϕ P (2022 ϕ).  Если хорда уже была проведена — она не проводится второй раз. Оказалось. что все проведенные хорды не пересекаются иначе чем по концам. Докажите, что всего проведено конечное число хорд.

Источники: Высшая проба - 2022, 11.5 (см. olymp.hse.ru)

Показать доказательство

Нам будет полезен аналог целой части < x> ,  выражающий для двух чисел с разностью x  расстояние по окружности между образами этих чисел, если намотать числовую прямую на единичную окружность: будем говорить, что <x >= {x} при      1
{x}≤ 2  и < x>= 1 − {x} при      1
{x}> 2  (здесь {x} обозначает обычную целую часть числа x  ). Тогда, например, если длина дуги между точками α  и β  равна ϕ,  то длина дуги между 2022α  и 2022β  равна < 2022ϕ> .

Для краткости точку      n
P(2022ϕ)  будем обозначать просто Pn.  Заметим, что точки не повторяются: если бы оказалось, что Pm =Pn  при m > n,  то выполнялось бы Pm+1 = Pn+1,  Pm+2 =Pn+2  и т.д., тогда число хорд было бы конечным. Итак, каждая новая точка попадает строго между ранее поставленными.

Определим по индукции понятие активной дуги n  -го шага. Для натурального n = 1  будем ей считать ту из двух дуг P0P1,  на которую попадает P2  . Заметим, что тогда все точки Pn  лежат на активной дуге первого шага. В самом деле, пусть все точки от 2 -й до m  -й лежат на активной дуге 1 -го шага, а m +1  -я там не лежит. Тогда хорды P0P1  и PmPm+1  пересекаются.

Теперь предположим, что мы уже индукцией по n  доказали, что все точки Pm  попадают на активную дугу n  -го шага при m >n.  Определим активную дугу n+ 1  -го шага. Pn+1  лежит на n  -й активной дуге, значит делит ее на две части. На одну из этих частей попадает точка Pn+2  — эту часть и будем называть активной дугой n+ 1  -го шага. Тогда чтобы индукция работала нам осталось доказать, что все точки Pm  лежат на этой дуге при m ≥n +2.  Понятно, что концы дуги — это какие-то из предыдущих точек P,  значит есть фрагмент ломанной, соединяющий их. Значит если Pm  еще лежит на дуге, а Pm+1  — уже нет, и Pm+2  не совпадает ни с одной из предыдущих точек P  (что упоминалось ранее) — значит, PmPm+1  пересекается с указанным фрагментом ломанной.

Как легко видеть, каждая следующая активная дуга является подмножеством предыдущей. Более того, обозначим через ϕn,  длину активной дуги, а через ψn  — длину дуги Pn−1Pn  (той из двух, которая лежит внутри активной). Тогда или

ϕn = ψn или  ϕn =ϕn−1− ψn
(1)

Поскольку {ϕ }∞
  n n=1  — невозрастающая последовательность положительных чисел, она имеет предел. Докажем, что этого не может быть.

Если предел равен нулю, то нулю же равен и предел последовательности     ∞
{ψn}n=1,  поскольку ψn ≤ϕn−1.  Но заметим, что ψn+1 =<2022ψn > .  То есть если     -1-
ψn ≤ 4044,  то ψn+1 =2022ψn.  Кроме того, ψn  всегда не равно нулю (иначе две точки совпали). Значит для    -1-
𝜀= 4044  в последовательности встречаются члены большие 𝜀  со сколь угодно большими номерами — ноль не является пределом.

Пусть предел равен положительному числу a.  Тогда по (1)  последовательность ψn  разбилась на две подпоследовательности, предел одной равен нулю, предел другой — a  , причем по доказанному выше вторая содержит бесконечное число членов. Заметим, что a  — неподвижная точка преобразования ψ →< 2022ψn >.  Тогда аналогично |ψn+1− a|=2022|ψn − a| если          1
|ψn− a|≤ 4044.

Выберем 𝜀< 20a22,  будем говорить о числах 0 и a  как о двух пределах. Начиная с какого-то номера все ψn  должны попадать в 𝜀  -окрестность одного из двух пределов. Но тогда при переходе от ψn  к ψn+1  расстояние до предела будет расти в 2022 раза - рано или поздно ψn  выскочит из 𝜀  -окрестности текущего предела и еще не дотянется до 𝜀  -окрестности другого предела.

Ошибка.
Попробуйте повторить позже

Задача 6#74783

Фокусник и его Ассистент готовятся показать следующий фокус. Фокуснику завяжут глаза, после чего один из зрителей напишет на доске 60-битное слово (последовательность из 60 нулей и единиц). Ассистент уверен, что сможет незаметно сообщить фокуснику 44 бита (не обязательно написанные в слове, можно вычислять любые функции). После чего Фокусник должен будет назвать слово. Для какого наибольшего числа C  Фокусник и Ассистент могут придумать стратегию, позволяющую всегда назвать слово, совпавшее хотя бы в C  битах с написанным зрителем?

Источники: Высшая проба - 2022, 11.6 (см. olymp.hse.ru)

Показать ответ и решение

Докажем оценку C ≤ 56.

______________________________________________________________________________________________________________________________________________________

Пусть существует стратегия, позволяющая ошибаться не более чем в k  битах (  т.е. C =60− k).  Тогда заметим, что Наблюдатель, знающий стратегию Фокусника, сообщенное Ассистентом слово, и набор бит, в которых ошибся Фокусник, может восстановить написанное Зрителем слово. В самом деле, Наблюдатель берет слово, которое должен был написать Фокусник, и меняет его в тех местах, где Фокусник ошибся. Значит, количество различных пар вида "слово сообщенное Ассистентом и набор мест, в которых фокусник ошибся"не меньше, чем различных слов, которые мог написать зритель. То есть

   (               )
244 C060+C160+ ...+ Ck60 ≥ 260

Перепишем в виде

(                )
 C060+ C160+ ...+ Ck60  ≥216

Заметим, что при k ≤3  неравенство неверно:

216 > 64000

 0    1    2   3         602  603
C60+ C60+C 60+ C60 < 1+ 60 + 2 + 6 = 1+ 60+ 1800+ 36000

_________________________________________________________________________________________________________________________________________________________________________________

Теперь попробуем показать, из каких соображений строится пример. Для начала напомним конструкцию, известную как математикам так и программистам: двоичный код длины 15, позволяющий передать 11 бит полезной информации и исправить ошибку не более чем в одном бите (также известен как 15-битный код Хэмминга). Построим его.

Для начала заметим, что есть ровно 11 слов длины 4 из нулей и единиц, содержащих хотя бы две единицы (всего слов  4
2 = 16,  минус одно из одних нулей, минус четыре с одной единицей). Припишем такие слова номерам от 1 до 11 как угодно, например как в таблице:

PIC

Теперь построим код таким образом: в первые 11 бит запишем те биты, которые хотим передать (первые 11 позиций будем называть информационными). В последние 4 бита запишем следующие контрольные суммы. В 12-й запишем сумму по модулю два тех из первых 11 бит, приписанное 4-значное число которых имеет 1 в первом разряде, то есть биты № 3,5,6,8,9,10,11. В 13-й — сумму тех из первых 11 бит, приписанное 4-значное число которых имеет 1 во втором разряде, в 14-й сумму бит, имеющих 1 в третьем разряде приписанного слова, в 15-й — в четвертом. Покажем, почему этот код позволяет исправить одну ошибку при передаче.

_________________________________________________________________________________________________________________________________________________________________________________

Пусть Получатель получил кодовое слово, возможно искаженное в одном бите. Получатель точно так же по первым 11 битам посчитает 4 контрольные суммы, и сравнит их с четырьмя полученными. Если совпали все четыре — то слово дошло без искажений. В самом деле, если бы исказился контрольный бит — в нем было бы расхождение, а если информационный — то расхождения были бы во всех контрольных, в которые он входит. Аналогично, если расхождение есть ровно в одном контрольном бите, то исказился именно он. В самом деле, если исказился другой контрольный — то все информационные дошли правильно, тогда в этом контрольном расхождения бы не было; а если исказился информационный, то все контрольные дошли правильно, и тогда расхождения были бы во всех контрольных, в которые входит искаженный информационный, а таких контрольных хотя бы два (именно за этим мы приписывали комбинации нулей и единиц, содержащие хотя бы две единицы). По аналогичным соображениям если получатель видит не менее двух расхождений с контрольными битами, то искажен точно информационный. Тогда достаточно из 11 информационных позиций выбрать ту, в приписанном 4-битном слове которой единицы стоят ровно на тех местах, на которых есть расхождения с контрольными суммами — это и есть искаженная позиция.

_________________________________________________________________________________________________________________________________________________________________________________

Теперь подумаем в других терминах, что же мы построили. У нас есть код из 211  кодовых слов. Каждое из этих слов можно исказить 16 способами (ничего не менять, или изменить один из 15 бит). Все     11
16× 2  полученных в результате слов будут разными. В самом деле, если бы какое-то слово w  получалось двумя разными способами: искажением кодового слова u1  и искажением кодового слова u2  (в обоих случаях — не более чем в одном бите), то код бы не исправлял одну ошибку — Получатель может получить слово w,  но в этом случае не может понять, посылали ему u1  или u2.  Итак, все      11
16× 2  слов разные, но это означает что вообще любое из слов длины 15 получается искажением какого-то из кодовых слов не более чем в одном бите.

На этом и построим стратегию Фокусника и Ассистента. Ассистент видит написанное зрителем 60-битное слово, режет его на четыре 15-битных слова w1,w2,w3,w4.  Как доказано выше, для них найдутся кодовые слова u1,u2,u3,u4,  такие что wi  отличается от ui  не более чем в одном символе. Тогда Ассистент выбрасывает из каждого кодового слова контрольные символы, получает четыре слова длины 11, то есть одно слово длины 44. Его он и передает Фокуснику. Фокусник восстанавливает контрольные суммы, получает слово u1u2u3u4,  отличающееся от исходного максимум в четырех битах — победа.

Ответ: 56
Рулетка
Вы можете получить скидку в рулетке!