Разбиение доски на части
Ошибка.
Попробуйте повторить позже
В каждой клетке таблицы записано число. Назовём клетку хорошей, если сумма чисел строки, содержащей эту
клетку, не меньше, чем сумма чисел столбца, содержащего эту клетку. Найдите наименьшее возможное количество хороших
клеток.
Источники:
Оценка.
Разобьём все клетки таблицы на грушп по
клеток так, чтобы в каждой груше все клетки находились в разных строках и разных
столбцах. Пример такого разбиения для
см. на рисунке:
1 | 2 | 3 | 4 | 5 |
5 | 1 | 2 | 3 | 4 |
4 | 5 | 1 | 2 | 3 |
3 | 4 | 5 | 1 | 2 |
2 | 3 | 4 | 5 | 1 |
Для других разбиение аналогично: например, в одну группу берём главную диагональ (идущую сверху слева вниз вправо), во вторую
— диагональ над ней и число в левом нижнем углу, в третью — следующую диагональ и диагональ из двух клеток слева внизу, и
т.д.
Предположим, что в какой-то группе все клетки плохие. Тогда для каждой клетки этой группы сумма чисел содержащей её строки
меньше суммы чисел содержащего её столбца. Суммируя эти неравенства по всем клеткам групшы, получаем, что сумма чисел во всей
таблице, подсчитанная по строкам, меньше, чем эта же сумма, подсчитанная по столбцам - противоречие, Значит, в каждой группе есть
хорошая клетка, и число хороших клеток не меньше числа групп, то есть не меньше .
_________________________________________________________________________________________________________________________________________________________________________________
Пример, подтверждающий точность полученной оценки
хороших клеток уже возможно.
Пусть в первой строке стоят единицы, а в остальных нули. Тогда все клетки первой строки хорошие, а остальные плохие.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!