Конструктивы в алгебре
Ошибка.
Попробуйте повторить позже
Можно ли на плоскости из каждой точки с рациональными координатами выпустить луч так, чтобы никакие два луча не имели общей точки и при этом среди прямых, содержащих эти лучи, никакие две не были бы параллельны?
Источники:
Подсказка 1
Не совсем понятно, как работать с огромным количеством начАл лучей…а что если найти особенную точку и отталкиваться от нее? Как Вы думаете, на что будет похож наш рисунок, когда мы проведем все лучи?
Подсказка 2
Представляя себе итоговый рисунок, на ум приходит солнце (из точек исходят не пересекающиеся лучи). Отсюда идея найти такую точку О, что на любой прямой, проходящей через О, лежит не более одной рациональной точки. Как тогда мы сможем попробовать построить наш пример?
Подсказка 3
Тогда, проведя из О всевозможные лучи во все рациональные точки и удалив у каждого луча начало (от О до соответствующей рациональной точки), получим искомый набор непересекающихся непараллельных лучей. Попробуем найти такую точку О.
Подсказка 4
Возьмем какую-то точку О. Что если на какой-то прямой из нее лежат две рациональные точки А и Б? Что тогда можно сказать об отрезках ОА и ОБ?
Подсказка 5
Они пропорциональны. Тогда мы сможем записать уравнение на их пропорциональность и попробовать решить. А какие координаты хочется дать точке О, чтобы решений у уравнения пропорциональности отрезков было как можно меньше?
Подсказка 6
Зададим точку О при помощи иррациональных координат!
Достаточно найти такую точку , что на любой прямой, проходящей через
, лежит не более одной рациональной точки. Тогда, проведя
из
всевозможные лучи во все рациональные точки и удалив у каждого луча начало (от
до соответствующей рациональной точки),
получим искомый набор непересекающихся непараллельных лучей.
_________________________________________________________________________________________________________________________________________________________________________________
Можно указать точку явно - например, подойдёт точка
. Пусть на прямой, проходящей через эту точку, есть две
рациональные точки
и (
) (где
рациональные). Тогда вектора (
и
пропорциональны,
откуда
откуда . Возводя в квадрат и перенося заведомо рациональные слагаемые в левую часть,
получим, что будет рациональным число
, что возможно только при
или
. Но из равенства
(*) видим, что если выполнено хоть одно из равенств
, то выполнено и второе, откуда точки
и
совпадают.
_________________________________________________________________________________________________________________________________________________________________________________
Можно поступить иначе - доказать существование такой точки . Проведём всевозможные прямые через пары рациональных
точек. Таких прямых будет счётное количество. Так как всего направлений на плоскости несчётное количество, на ней
найдётся прямая
, не параллельная ни одной из проведённых прямых. Проведённые прямые высекают на
счётное число
точек, а всего на
точек несчётное количество, поэтому там ещё останутся точки, любая из них подойдёт в качестве
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!