Тема ТурГор (Турнир Городов)

Турнир городов - задания по годам .09 Турнир городов 2023

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тургор (турнир городов)
Разделы подтемы Турнир городов - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#67555

Дана треугольная пирамида SABC  , основание которой — равносторонний треугольник ABC  , а все плоские углы при вершине S  равны α  . При каком наименьшем α  можно утверждать, что эта пирамида правильная?

Источники: Тургор - 2023, 11.1 (см. turgor.ru)

Подсказки к задаче

Подсказка 1

Эта задача на оценку + пример. Давайте попробуем сначала привести пример для угла, который, как нам кажется, подходит. А потом уже докажем, что для меньшего угла условие задачи не выполняется. Подумайте какой хороший угол нам подойдёт? Слова про правильные фигуры на это всячески намекают.

Подсказка 2

Верно, докажем, что при плоском угле 60 градусов наша пирамида окажется правильной. Нужно только понять, что если в треугольнике есть угол 60 градусов, то сторона напротив него средняя по величине между другими. Тогда предположив, что какое-то боковое ребро не равно ребру из основания, сможем получить противоречие и получить доказательство. Что же будет, если плоские углы будут меньше 60? Попробуйте построить пример неправильной пирамиды с таким углом, учитывая условия задачи и соотношения сторон по их размерам.

Подсказка 3

Давайте, рассмотрим равнобедренный треугольник SAB, в котором SA=SB и ∠S = α(α<60). Тогда сторона AB в нём наименьшая, и мы сможем его отложить на боковых сторонах. Осталось только понять, что отложив на рёбрах трёхгранного угла нужные отрезки(два из которых SA и SB) с плоскими углами меньше 60, мы получим неправильную пирамиду, то есть контрпример.

Показать ответ и решение

Докажем, что при α= 60∘ пирамида правильная. Пусть стороны треугольника ABC  равны 1.  Заметим, что в любом треугольнике с углом   ∘
60 против этого угла лежит средняя по длине сторона (причём если она строго меньше одной из сторон, то строго больше другой). Пусть одно из боковых рёбер пирамиды не равно 1 :  например, SA >1.  Тогда в гранях SAB  и SAC  рёбра SB  и SC  будут меньше 1,  и значит, в грани SBC  ребро BC  — не средняя сторона, противоречие.

Покажем теперь, как построить неправильную пирамиду с плоскими углами     ∘
α< 60 при вершине S.

PIC

Рассмотрим треугольник SAB  c SA = SB  и ∠S =α.  Так как AB < SB,  на стороне SA  существует такая точка C,  что BC = AB.  Теперь возьмем трёхгранный угол, у которого все плоские углы равны α,  и отложим на его ребрах отрезки SA,  SB,  SC.  Пирамида SABC  — искомая.

PIC

Ответ:

 60∘

Ошибка.
Попробуйте повторить позже

Задача 2#67556

Существует ли целое n > 1  , удовлетворяющее неравенству

[√----   √----]  [√ ----]
  n − 2+ 2 n+ 2 <  9n+ 6?

(Здесь [x]  обозначает целую часть числа x  , то есть наибольшее целое число, не превосходящее x  .)

Источники: Тургор-2023, 11.2 (см. www.turgor.ru)

Подсказки к задаче

Подсказка 1

Первая мысль, которая возникает при виде этого неравенства, — это избавиться от целых частей, с ними неудобно работать. В конце концов, тут есть корни, если бы можно было в исходном неравенстве убрать целые части, то дальше можно и в квадрат возводить спокойно. Что ж, можно попытаться доказать, что целые части действительно можно убрать...

Подсказка 2

Для этого примените неравенства, возникающие из определения целой части числа. Что ж, дальше попробуем пользоваться возведением в квадрат. И... в итоге получается тривиальное неравенство, не содержащее n :( Что это может значить? Вероятно, надо как-то ещё преобразовать исходное неравенство, чтобы такой способ сработал. Если и пытаться это делать, то для правой части, она выглядит получше. Не поможет ли возведение её в квадрат?

Подсказка 3

Хм, можно оценить, что квадрат правой части (к слову, целой) не больше, чем 9n + 6. Подумаем, а когда в таком неравенстве достигается равенство?

Подсказка 4

Вообще, при равенстве получится, что квадрат целого числа даёт остаток 6 по модулю 9. Стоп, а такое вообще возможно?

Подсказка 5

Нет, квадраты чисел по модулю 9 не дают остаток 6! Более того, остаток 5 они тоже не дают, а вот остаток 4 уже может получиться. А тогда можно оценить правую часть более строго!

Подсказка 6

Действительно, получается, что квадрат правой части на самом деле не больше, чем 9n + 4, давайте преобразуем исходное неравенство, а дальше опять будем возводить в квадрат, остаётся надеяться, что в результате получится более содержательное неравенство

Показать ответ и решение

Предположим целое n> 1  удовлетворяет этому неравенству. Имеем

[√----]2
  9n+ 6 ≤ 9n+ 6,

Но квадрат целого числа не может давать ни остаток 6, ни остаток 5 от деления на 9, значит,

[√-----]2
  9n+ 6  ≤9n+ 4

[√-----]  [√ ----]
  9n+ 6 ≤   9n +4

Тогда исходное неравенство влечёт неравенство

√n-− 2+ 2√n-+2< √9n-+4

Возводя в квадрат и приводя подобные слагаемые, получаем, что

∘ -----
4 n2− 4< 4n− 2

              1
n2− 4< n2− n+ 4

n <4,25

Однако, прямая проверка показывает, что при n∈ {2,3,4} исходное неравенство не выполняется — противоречие.

Ответ: нет

Ошибка.
Попробуйте повторить позже

Задача 3#67557

В таблице 44× 44  часть клеток синие, а остальные красные. Никакие синие клетки не граничат друг с другом по стороне. Множество красных клеток, наоборот, связно по сторонам (от любой красной клетки можно добраться до любой другой красной, переходя из клетки в клетку через общую сторону и не заходя в синие клетки). Докажите, что синих клеток в таблице меньше трети.

Источники: Турнир городов - 2023, 11.3, автор - Б. Френкин

Подсказки к задаче

Подсказка 1

В данной задаче нужно получить какие-то оценки на количество синих клеток. Для этого полезно некоторую величину посчитать двумя способами. Какую здесь удобно взять?

Подсказка 2

Будем считать число M общих сторон красных клеток с синими. Оценить M снизу довольно просто, как это можно сделать?

Подсказка 3

Так как синие клетки не граничат с синими, то каждая сторона синей клетки даёт вклад 1 в M, кроме...

Подсказка 4

Сторон синих клеток, примыкающих к краю таблицы. Но их количество легко оценить, и мы получим оценку снизу на M.

Подсказка 5

Теперь хочется получить оценку сверху. Ясно, что каждая красная клетка даёт вклад в M не больше 4, но эта оценка слишком грубая.

Подсказка 6

Опять же надо учесть, что стороны красных клеток, примыкающие к краю таблицы, не дают вклад в M, а их количество также легко оценить.

Подсказка 7

Мы так и не воспользовались одним из условий задачи (каким?). Оно поможет нам сделать оценку сверху ещё точнее.

Подсказка 8

Теперь записываем, что нижняя оценка на M не больше верхней, и получаем неравенство на количество синих клеток. Из него видим, что их меньше трети.

Показать доказательство

Положим N =44,  и пусть b  и r  — количества синих и красных клеток. Оценим сверху количество M  общих сторон красных клеток с синими.

Всего у красных клеток 4r  сторон, откуда M ≤4r.  Вдоль краёв таблицы стоит не меньше 2N  сторон красных клеток, поэтому M ≤ 4r− 2N.  Теперь рассмотрим граф, вершины которого — красные клетки, а рёбра соединяют клетки, имеющие общую сторону. По условию граф связен, поэтому количество его рёбер не меньше r− 1.  Каждому из них отвечает общая сторона двух красных клеток, засчитанная в величине 4r  два раза, поэтому из M  можно вычесть 2(r − 1).  Получаем

M  ≤4r− 2N − 2(r− 1)= 2r− 2N + 2
(1)

Оценим теперь M  снизу. Сложив количества сторон всех синих клеток, получим 4b.  Ясно, что на одной стороне таблицы не больше N ∕2  сторон синих клеток. Поэтому

M ≥ 4b− 2N
(2)

Из (1) и (2) следует, что

4b− 2N ≤M ≤ 2r− 2N + 2

Поскольку b+ r= N2,  получаем отсюда

                 2
6b≤ 2N2+ 2⇒ b≤ N--+ 1
                3   3

Поскольку N2 =442 ≡ 1 (mod 3),  а b  целое, получаем нужный результат.

Ошибка.
Попробуйте повторить позже

Задача 4#67558

Дан треугольник ABC.  Пусть I  — центр его вписанной окружности, P  — такая точка на стороне AB,  что угол PIB  прямой, Q  — точка, симметричная точке I  относительно вершины A.  Докажите, что точки C,I,P,Q  лежат на одной окружности.

Источники: Турнир городов - 2023, 11.4, авторы - И. Кухарчук, А.Юран

Подсказки к задаче

Подсказка 1

Условие на угол PIB выглядит немного странно...однако он входит в состав угла AIB (I - центр вписанной окружности, так еще нам и намекают число 90) Какой угол тогда хочется сразу посчитать?

Подсказка 2

Угол AIB на 90 больше половины угла ACB, а, значит, углы ACI и AIP равны. На картинке много биссектрис, которые могут помочь нам в поисках подобных треугольников. А еще хочется как-то пользоваться равенством отрезков QA и AI(мы этого еще не делали)

Подсказка 3

Треугольники CIA и IPA подобны по трем углам, а в них как раз присутствует отрезок IA, так что можем записать, что IC/IP = AC/AI = AC/AQ. Смотрим, какие же треугольники содержат отрезки IC, IP, AC, IQ (или хотя бы часть из них, чтобы дальше работать с подобием)?

Подсказка 4

Треугольники ICP и ACQ! Становится ясно: хотим равенства углов CIP и CAQ, чтобы доказать подобие треугольников с такими же названиями, чтобы доказать равенство углов IPC и AQC. Посчитать угол QAC как внешний к половине угла BAC несложно, а угол PIC есть сумма углов AIP и AIC. Осталось лишь воспользоваться знанием про углы с вершиной I из подсказки 2 ;)

Показать доказательство

PIC

Пусть CI  пересекает AB  в точке N.  Угол AIB  тупой, а угол NIB  острый, значит P  лежит между A  и N.  Далее, т.к. I  — центр вписанной окружности треугольника, получаем

∠AIP = ∠AIB − 90∘ = 1∠ACB = ∠ACI
                  2

∠CAI = ∠IAP

Значит, треугольники CAI  и IAP  подобны. Учитывая это и равенство QA = AI,  имеем

-IC-= P-I= P-I
AC   AI   QA

Кроме того,

                     (           )
∠AIP + ∠AIC = 1∠ACB + 90∘+ 1∠ABC  = 180∘− 1∠CAB
             2             2             2

Следовательно,

         ∘  1          ∘
∠PIC = 180 − 2∠CAB  =180 − ∠CAI = ∠QAC

Тогда треугольники QAC  и PIC  подобны по углу и отношению прилежащих сторон, значит ∠IPC =∠AQC  =∠IQC,  и точки C,I,P,Q  лежат на одной окружности.

Замечание. После доказательства подобия треугольников CAI  и IAP  можно действовать по-другому. Выберем точку R  на продолжении отрезка CA  за точку A  так, что AP =AR;  тогда треугольники IAP  и QAR  равны (IA= QA,AP = AR,∠QAR = ∠CAI = ∠IAP  ). Значит, QRP I  — равнобокая трапеция, и она вписана. С другой стороны, поскольку ∠CIQ = ∠CIA =∠CRQ,  точки C,I,R,Q  лежат на одной окружности. Значит, все пять точек C,I,P,Q,R  лежат на окружности (QRI).

Ошибка.
Попробуйте повторить позже

Задача 5#67559

Назовём рассадку N  кузнечиков на прямой в различные её точки k  -удачной, если кузнечики, сделав необходимое число ходов по правилам чехарды, могут добиться того, что сумма попарных расстояний между ними уменьшится хотя бы в k  раз. При каких N ≥ 2  существует рассадка, являющаяся k  -удачной сразу для всех натуральных k  ? (В чехарде за ход один из кузнечиков прыгает в точку, симметричную ему относительно другого кузнечика.)

Источники: Тургор-2023, 11.5 (см. www.turgor.ru)

Подсказки к задаче

Подсказка 1

Случай N=2 рассмотрите отдельно, он очевиден. Для всех N>2 попробуйте придумать пример такой рассадки.

Подсказка 2

Просто придумать рандомную рассадку сложно, поэтому хочется чтобы она циклически повторялась с каждым ходом, то есть чтобы все попарные расстояния между кузнечиками уменьшались с каждым ходом в фиксированное число раз, и картинка оставалась "подобной" предыдущей. На что это похоже?

Подсказка 3

На геометрическую прогрессию! Она и поможет нам придумать такую рассадку. Только вот рассадка 1, q, q^2, ... не очень то работает. Как можно подкорректировать координаты кузнечиков?

Подсказка 4

Давайте посадим кузнечиков в точки с координатами 0, 1, 1+q, 1+q+q^2, ... Какой тогда можно сделать первый ход, чтобы картинка стала подобна предыдущей (возможно, со сдвигом и с подбором нужного q)?

Подсказка 5

Нужно чтобы первый кузнечик перепрыгнул через второго и оказался на последнем месте! Отсюда мы получаем условие на q. И остаётся только одно: доказать, что найдётся q, удовлетворяющее этому условию, и притом оно будет из (0; 1).

Показать ответ и решение

Первое решение.

Для любого N > 2  предъявим явно начальную рассадку, которая является k  -удачной для любого натурального числа k.

Сначала для данного N > 2  построим конечную геометрическую прогрессию        N−1
1,q,...,q   ,  со знаменателем q ∈ (0,1),  для которой выполнено условие

1= q+ q2 +⋅⋅⋅+ qN−1

Требуемый набор существует при любом целом N > 2,  поскольку уравнение

   2       N−1
q+q + ⋅⋅⋅+ q   − 1= 0

имеет решение на интервале (0,1),  так как левая часть меняет знак на его концах.

Расположим теперь N  кузнечиков в следующих начальных точках:

0,1,(1+ q),(1 +q+ q2),...,(1 +q+ ⋅⋅⋅+ qN−3),(1+ q+⋅⋅⋅+qN−2)

Рассмотрим прыжок первого кузнечика через второго; тогда его новая координата будет равна 2 =1 +1 =1+ q+ q2+⋅⋅⋅+qN−1.  Получилось, что прыгнувший кузнечик стал самым правым, а все кузнечики теперь расположены в точках

1,(1+ q),(1+ q+q2),...,(1+q +⋅⋅⋅+ qN−2),(1+ q+ ⋅⋅⋅+qN− 1)

Сдвинув начало координат на 1 вправо, получим координаты кузнечиков

0,q,(q+ q2),...,(q+ ⋅⋅⋅+ qN −2),(q+⋅⋅⋅+qN−1)

Таким образом, кузнечики уменьшили свои координаты ровно в 1
q  раз. Если указанный шаг (прыжок самого левого кузнечика через ближайшего соседа) повторять r  раз, то попарные расстояния уменьшатся в -1
qr  раз, что позволит достичь любого нужного уменьшения -1.
K

Второе решение.

При N = 2  как бы кузнечики ни прыгали, расстояние между ними не меняется.

Пусть N ≥ 3.  Рассадим 1-го, 2-го и 3-го кузнечиков на прямой в точках с координатами 0, 1, √2,  назовём этих кузнечиков V,  Q,     R.  Остальные произвольно рассаживаются в другие попарно различные точки. Покажем, что для всякого k  кузнечики далее смогут прыгать так, чтобы сумма попарных расстояний уменьшилась хотя бы в k  раз (исходную сумму обозначим через P ).

Лемма.

Пусть три кузнечика сидят на прямой в попарно различных точках и отношение расстояний от одного из них до двух других иррационально. Тогда сколько бы они ни сделали прыжков друг через друга, они всё равно будут в попарно различных точках, и отношение расстояний от одного из них до двух других будет иррационально.

Доказательство леммы.

Покажем, что эти условия сохраняются при прыжке. Предположим, для некоторого кузнечика отношение расстояний до двух других рационально, тогда эти расстояния имеют вид a  и aq,  где q  рационально. Тогда расстояние между другими двумя кузнечиками ненулевое и имеет вид |a± aq|,  тогда отношение любых двух расстояний между кузнечиками рационально, противоречие. Пусть какой-то кузнечик перепрыгнул через кузнечика A,  тогда расстояния от A  до обоих кузнечиков не изменились, а значит, отношение этих расстояний осталось иррациональным, в частности расстояния различны, и потому кузнечики по-прежнему находятся в попарно различных точках.

Вернёмся к задаче.

Пусть первые несколько ходов будут прыгать только кузнечики V,  Q,  R  и только через друг друга, согласно лемме при таких прыжках они всегда будут оставаться в попарно различных точках. Покажем, что спустя любое количество таких ходов они смогут далее прыгать так, чтобы текущее минимальное из попарных расстояний между ними уменьшилось не менее чем в два раза.

Пусть, не умаляя общности, в текущий момент минимально расстояние между кузнечиками V,  Q  с координатами a  и b,  а R  имеет координату c  . Отметим на прямой все точки с координатами, отличающимися от a  на число, кратное (a − b).  Понятно, что прыгая друг через друга кузнечики V,  Q  смогут занять любые две соседние отмеченные точки, тогда R  не находится в отмеченной точке (по лемме прыгая только через друг друга V,  Q,  R  остаются в попарно различных точках), тогда V  , Q  могут занять две соседние отмеченные точки между которыми лежит c,  и расстояние от R  до одного из кузнечиков будет не более 12|a− b|,  то есть наименьшее расстояние уменьшилось хотя бы в 2 раза.

Тогда за несколько ходов кузнечики V,  Q,  R  могут уменьшить наименьшее расстояние между ними хотя бы в 2 раза, потом за несколько ходов ещё хотя бы в 2 раза, потом ещё, и т.д, могут за несколько ходов добиться того, чтобы расстояние между какими-то двумя из них было равно некоторому числу t  , меньшему ----P-----
2N (N − 1)⋅k  — пусть они так и сделают. Назовём каких-нибудь двух кузнечиков, между которыми расстояние t,  хорошими, и одного из них назовём D,  далее эти кузнечики уже не прыгают.

Далее, любой кузнечик не из пары хороших может прыгая через пару хороших (в подходящем порядке) смещаться на 2t  в любую сторону на прямой, и тогда может за несколько прыжков через них оказаться на расстоянии меньшем 2t  от D,  пусть все кузнечики кроме хороших сделают прыжки таким образом. Тогда расстояние от любого кузнечика до D  будет меньше 2t,  а значит, все попарные расстояния меньше 4t,  а значит, их сумма меньше 4t⋅N-(N-−-1)-  P-
    2     < k.

Ответ:

при N ≥ 3

Ошибка.
Попробуйте повторить позже

Задача 6#67560

В ряд слева направо стоят N  коробок, занумерованных подряд числами 1,2,...,N  . В некоторые коробки, стоящие подряд, положат по шарику, оставив остальные пустыми. Инструкция состоит из последовательно выполняемых команд вида «поменять местами содержимое коробок № i  и № j  », где i  и j  — числа. Для каждого ли    N  существует инструкция, в которой не больше 100N  команд, со свойством: для любой начальной раскладки указанного вида можно будет, вычеркнув из инструкции некоторые команды, получить инструкцию, после выполнения которой все коробки с шариками будут левее коробок без шариков?

Источники: Тургор-2023, 11.6 (см. www.turgor.ru)

Подсказки к задаче

Подсказка 1

Сразу вот такое наблюдение: у нас всего N коробок, а длина инструкции может быть 100N...Да и еще шарики в коробках лежат не наугад, а подряд, т.е. еще меньше вариаций для расположения шаров в коробках... На какой ответ в задаче это намекает?

Подсказка 2

Как будто всегда можно придумать такую инструкцию) А если мы доказываем что-то, что должно работать для любого натурального числа, то давайте доказывать это по индукции! А именно, будем доказывать, что для любого N существует нужная инструкция длины меньше чем 100N. Как можно это сделать?

Подсказка 3

База понятное дело проверяется, а вот что делать с переходом...Нам в нем, очевидно, нужно пользоваться меньшим числом K, для которого условие верно. Значит, нам нужно свести ситуацию для N к меньшей ситуации. То есть, по факту нужно перенести все шарики в меньший промежуток, где они также стоят подряд. Как это можно сделать и какой промежуток брать для этого?

Подсказка 4

Давайте мы будем переносить все в левую половину (если N = 2k, то в первые k коробок, если N = 2k+1, то в первые k+1 коробок). И самая важная идея: представьте, что в коробках, в которых есть шарики - синие шарики, а в которых нет мы положили красные шарики. То есть, нам нужно синие шары положить левее красных, но при таком условии мы можем сделать наоборот, и с помощью дополнительных инструкций поменять нам на нужную ситуацию)

Подсказка 5

Если сейчас в лоб не получается придумать как перетащить все шарики синие шарики в левую половинку, то вот что поймите: мы же можем перетащить любые шарики влево а оставшиеся будут справа, а после сделать ситуацию наоборот. Поэтому перетаскивайте те шары, которых меньше (и кстати, их будет <не больше k как раз).

Подсказка 6

Раз наших шаров не больше k, то значит в i-ой и k+i-ой коробкой не больше одного нужного шарика....Попробуйте применить это и раскрутить дальше, возможно добавив какие-то инструкции)

Показать ответ и решение

Давайте считать, что все шарики синие. В пустые коробки положим по красному шарику. Теперь пустых коробок нет. Покажем даже более сильное утверждение: что для любого N  есть инструкция не длиннее чем 3N  со следующим свойством.

Пусть в N  коробочках, стоящих в ряд, лежат красные и синие шарики, причём для хотя бы одного из цветов шарики этого цвета лежат подряд (такие конфигурации назовём непрерывными). Тогда можно вычеркнуть часть строк и получить инструкцию, после выполнения которой все синие шарики будут левее всех красных шариков, а также можно получить инструкцию, после которой все красные шарики левее всех синих (нумерация коробок слева направо).

Воспользуемся методом математической индукции. Понятно, что для N = 1  такая инструкция есть. Это база индукции. Теперь покажем, как из инструкции для k ≥1  сделать инструкцию для 2k  и для 2k− 1,  этого будет достаточно. Обозначим N = 2k  или 2k− 1.  Инструкция для N  будет выглядеть так:

I группа: сначала все пары вида (i,k+ i)  в любом порядке

Если N  нечетно, сюда приходится добавить все пары вида (i+1,i+k)  при i≥1  (назовём эти команды дополнительными).

II группа: инструкция для k  первых коробочек из индукционного предположения

III группа: все пары различных чисел вида (i,N + 1− i)  в любом порядке

При N = 2k  длина этой инструкции не превышает k+ 3k +k =5k ≤3N.

При N = 2k− 1  длина этой инструкции не превышает 2(k− 1)+3k+ (k − 1)=  = 6k− 3= 3N.  Теперь почему она работает. Есть тот цвет, которого не больше k  , назовём его основным. Покажем, что можно выполнить часть инструкций I группы так, чтобы все шарики основного цвета лежали среди первых k  коробочек, и при этом конфигурация среди первых k  коробочек будет тоже непрерывной.

Есть четыре варианта того, как могут располагаться шарики основного цвета.

1) Они идут подряд, и все они среди левых k  коробок — ничего делать не надо;

2) Они идут подряд, и все они среди правых коробок — используем все пары вида (i,k+ i)  ;

3) Они есть и среди левых k  коробок, и среди остальных правых, при этом они идут подряд. Заметим, что ни в какой паре вида (i,i+ k)  нет двух шариков основного цвета. Все основные шарики тогда перенесем справа налево (тогда шарики не основного цвета будут среди первых k  шариков лежать подряд.

4) Шарики основного цвета — самые первые и самые последние. Перенеся последние влево (при нечётном N  используя дополнительные операции), получаем требуемое.

(Про это всё проще думать, если мыслить расположение коробочек не в ряд, а по окружности.)

После этого применим часть инструкций II группы, чтобы среди первых k  коробочек слева оказались все шарики основного цвета.

После этого окажется, что среди N  коробочек сначала идут подряд шарики одного цвета, а потом шарики другого. То есть мы пришли либо к искомой ситуации, либо к зеркальной. Перестановками третьей группы, если надо, отразим конфигурацию, и получим что хотели получить.

Ответ: да
Рулетка
Вы можете получить скидку в рулетке!