Тема ОММО (Объединённая Межвузовская Математическая Олимпиада)

ОММО - задания по годам .17 ОММО 2025

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела оммо (объединённая межвузовская математическая олимпиада)
Разделы подтемы ОММО - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#104691

Можно ли расставить все натуральные числа от 1 до 2027 в ряд так, что для любого k= 1,2,...,2027  сумма первых k  чисел в этом ряду нацело делится на k  -е число в ряду?

Источники: ОММО - 2025, номер 1 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Для начала полезно попробовать решить задачу для каких-нибудь маленьких чисел. Тогда мы сможем получить идеи, как построить пример или получить противоречие.

Подсказка 2

Для маленьких чисел у нас всё получилось, поэтому попробуем построить пример. Сумма всех чисел делится на 2027, так что 2027 можно поставить в конец. Без 2027 сумма будет 2027*1013, так что предпоследним хочется поставить именно 1013. Что будет дальше?

Подсказка 3

Оставшаяся сумма 2026*1013, так что можно поставить 2026, причем 1013 = (2027-1)/2, то есть половина от 2027. Теперь осталось продолжить пример и доказать, что он работает.

Показать ответ и решение

Рассмотрим следующую последовательность чисел:

1014,1,1015,2,1016,3,...,1013,2027

На нечетных позициях стоит последовательность чисел от 1014 до 2027, на четных — последовательность чисел от 1 до 1013. Покажем, что этот пример удовлетворяет условию задачи.

Пусть 2027= 2n+ 1,  тогда перепишем ряд в следующем виде:

n+ 1,1,n+ 2,2,n+ 3,3,...n +k,k,...n,2n+ 1

Покажем делимость на n +k,  сгруппируем крайние члены:

(n+ 1)+(k− 1)+(n+ 2)+(k− 2)+⋅⋅⋅+ (n+ k− 1)+ 1

Каждая такая сумма кратна n+ k,  что и требовалось.

Покажем теперь делимость на k,  вычислим частичную сумму этого ряда:

1+ 2+⋅⋅⋅+(k− 1)+(n+ 1)+(n+ 2)+⋅⋅⋅+ (n+ k− 1)+ (n+ k)

По формуле суммы арифметической прогрессии получаем

nk+ 2⋅ k⋅(k−-1)+k,
         2

где каждое слагаемое делится на k.

Ответ:

Да, можно

Ошибка.
Попробуйте повторить позже

Задача 2#104692

На окружности через равные промежутки отметили 144 точки и провели все возможные хорды между ними. Хорду с концами в отмеченных точках назовем “чётной”, если на большей дуге, которую она стягивает, лежит чётное число точек. В противном случае хорда “нечётная”. Рядом с каждой вершиной написано число. Сумма квадратов этих чисел равна 36. На каждой хорде написано произведение чисел, стоящих на её концах. Сумма чисел на «чётных» хордах равна a  , сумма чисел на «нечётных» хордах равна b  . Найдите наибольшее возможное значение величины a− b  .

Источники: ОММО - 2025, номер 2 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Заметим, что чётность дуги не зависит от того рассматривать меньшую дугу или большую. Мы хотим рассмотреть какое-то выражение, в котором будем рассматривать все попарные произведения чисел в точках, а ещё знаем сумму квадратов. Каким тогда может быть это выражение?

Подсказка 2

Да, это очень похоже на какой-то квадрат суммы! Теперь мы хотим, чтобы точки с одной чётностью номеров были с плюсом, а с разными — нет. Как тогда нужно расставить знаки внутри квадрата?

Подсказка 3

Переменный с одной чётностью номеров должны быть с плюсом, а другой — с минусом. Тогда у нас получится, что какой-то квадрат отличается от интересующей нас величины на постоянную, а квадрат оценивать мы умеем.

Показать ответ и решение

Обозначим числа, стоящие рядом с точками на окружности, как: a,a ,...,a  .
 1 2    144

Оценка. Рассмотрим произвольную хорду anak,n < k.  Пусть на большей дуге, которую она стягивает, лежит x  точек. Тогда на меньшей дуге лежит 144− x− 2= 142− x  точек. Очевидно, что числа x  и 142 − x  одной чётности, поэтому мы можем определять чётность хорды по любой из дуг, которую она стягивает. Между точками an  и ak  лежит n − k− 1  точка, откуда мы можно сделать вывод о том, что хорда anak  чётная, если числа n  и k  разной чётности, и нечётная в противном случае.

Теперь рассмотрим следующее выражение:

(a1− a2+ a3− a4+⋅⋅⋅+a143 − a144)2

Раскроем скобки: в сумме будут квадраты и попарные произведения всех слагаемых, при этом, перед слагаемым aiaj  будет стоять минус, если числа i  и j  разной чётности, и плюс в противном случае. Сумма квадратов всех слагаемых равна 36, сумма всех чисел  aiaj,  где i  и j  разной чётности, это сумма чисел на чётных хордах (посчитанная дважды!), которая равна a.  Аналогично, сумма всех чисел aiaj,  где i  и j  одной четности, равна удвоенной сумме чисел на нечётных хордах, то есть равна 2b.  Таким образом, данное выражение равно:

(a1− a2+ a3− a4+ ⋅⋅⋅+ a143− a144)2 =36+ 2b− 2a

Тогда

                                       2
2(a− b)=36− (a1− a2+ a3− a4 +⋅⋅⋅+ a143− a144) ≤ 36

Итак, максимальное значение a − b  равно 18.

Пример. a = 1
 i  2  для всех i.

Ответ: 18

Ошибка.
Попробуйте повторить позже

Задача 3#104693

У Тани имеется сосуд, заполненный раствором кислоты в воде. Масса раствора 3 кг, процентное содержание кислоты в растворе равно 89,76%  . Таня несколько раз совершает следующую операцию. Таня доливает в сосуд 1 кг кислоты, а затем выливает из сосуда 1 кг раствора. Сколько раз Таня совершила эту операцию, если процентное содержание кислоты в растворе стало равным 97,57%?

Источники: ОММО - 2025, номер 3 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Подумайте, что происходит с содержанием и массой раствора после совершения операции. Может, можно получить какую-то зависимость между количеством операций и массой одного из компонентов?

Подсказка 2

Как изменится масса кислоты в растворе после одной операции? А после k операций?

Подсказка 3

Из исходных данных можно найти массу кислоты в растворе до совершения операций и после, ведь после каждой операции масса раствора остается неизменной. Зная это и зависимость между массой кислоты в растворе и количеством операций, получится ли составить какое-то уравнение для нахождения количества совершённых операций?

Показать ответ и решение

Запишем как меняется масса кислоты при одной операции

       3
(m +1)⋅4,

где m  — начальная масса кислоты

Сделаем k  таких операций

((           )      )        ( )k  ( )k   ( )k−1
  (m +1)⋅ 3 +1 ⋅ 3+ 1 ⋅⋅⋅⋅= m ⋅ 3 +  3   +  3    + ⋅⋅⋅+ 3
         4      4             4     4      4          4

По формуле геометрической прогрессии получаем

              ( 3)k
m ⋅( 3)k+ 3 ⋅ 1−-4---
    4    4   1− 3
                4

Подставим начальную и конечную массу кислоты и найдем k

        (3)k    (   ( 3)k)
3⋅0,8976⋅ 4   +3⋅  1−  4    =3⋅0,9757

Сделаем замену    ( )k
t=  3
    4

3⋅0,8976 ⋅t+ 3⋅(1− t)= 3⋅0,9757

Откуда получаем

         ( )5
t= 243-=  3
   1024    4

Следовательно, k= 5.

Ответ:

5

Ошибка.
Попробуйте повторить позже

Задача 4#104694

В прямоугольном треугольнике ABC  ( ∠C =90∘ ) на отрезке BC  выбрана точка M  так, что BM :MC = 4:3.  Отрезок AM  пересекает биссектрису BN  в точке K.  Известно, что BK = 3,KN  =2.  Найдите площадь треугольника ABC.

Источники: ОММО - 2025, номер 4 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Нам известно, в каком отношении прямая KM делит стороны треугольника BNC. На какую теорему это может нам намекать?

Подсказка 2

Верно, на теорему Менелая! Воспользуйтесь ей, чтобы найти, в каком отношении точка N делит отрезок AC. Но ведь BN — не просто прямая.. Как теперь найти отношение сторон треугольника АВС?

Подсказка 3

Да, с помощью основного свойства биссектрисы! Теперь, чтобы дорешать задачу, нужно несколько раз воспользоваться теоремой Пифагора:)

Показать ответ и решение

PIC

По теореме Менелая для треугольника BNC  и точек A,K,M :

CM--⋅ BK-⋅ NA =1
MB   KN  AC

3 ⋅ 3⋅ NA-= 1
4  2 AC

Отсюда NAAC-= 89.  Пусть NC = y,  тогда NC = 8y.  По свойству биссектрисы:

BC-= NC-= 1
BA   NA   8

Пусть CM = 3x,MB  =4,  тогда BC =7x.  Отсюда BA = 8BC = 56x.  По теореме Пифагора для треугольника ABC :

AC2 + BC2 = AB2

   2     2      2
(9y)+ (7x) = (56x)

   2    2       2         2
81y = 49x ⋅64− 49x  =49⋅63⋅x

y2 = 73x2
     9

   7√7x
y =--3-

По теореме Пифагора для треугольника BCN  :

CN2 + CB2 = NB2

y2+ 49x2 =25

73x2    2
--9-+ 49x  =25

   15
x= 28

Тогда площадь треугольника ABC  равна:

   1         1       63 7√7x     63 ⋅7√7 ⋅152  675√7
S = 2AC ⋅BC = 29y⋅7x = 2-⋅-3-⋅x = --6⋅282---=--32-
Ответ:

 675√7
  32

Ошибка.
Попробуйте повторить позже

Задача 5#104695

Решите систему уравнений

(|   1-  1-  4-
|||{   x2 + y2 + z2 = 9
|   x2+ 9y2 +z2 = 4
|||( √ -      √-
 2  3x − 6y+ 3z = 2

Источники: ОММО - 2025, номер 5 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Обратите внимание на два первых уравнения. Это же просто суммы квадратов каких-то чисел. Почему бы не применить к ним какие-то рассуждения связанные с координатами?

Подсказка 2

Давайте рассмотрим векторы с координатами (1/x, 1/y, 1/z) и (x, 3y, z). Что мы про них знаем, исходя из первых двух уравнений?

Подсказка 3

Очевидно, нам известны их длины. Но также можно посчитать их скалярное произведение. Что можно сказать про их взаимное расположение?

Показать ответ и решение

Первое решение.

Заметим, что в левых частях первых двух уравнений — суммы квадратов. Так можно записать квадраты длин векторов

   ( 1 1 2)
a=   x,y,z  и b =(x,3y,z).

Согласно условию, |a|= 3,|b|=2  . Заметим, что скалярное произведение векторов a  и b  равно

(a,b)= 1⋅x+ 1 ⋅3y + 1 ⋅z = 6
      x    y     z

что совпадает с |a|⋅|b| , а значит, вектора коллинеарны, причём a= 3b
   2  . Поэтому

(|| 1 = 3⋅x        (|| x =± √√2
{ x1 = 29⋅y   ⇐⇒   { y =± √32
||( y2 = 23⋅z        ||( z = ± 32√
  z   2                  3

Подставим эти значения в третье уравнение (выбор знака перед каждым слагаемым независим):

  √-   √-
±2 2 ∓2 2 ±3= 3

Равенство возможно только в двух случаях: ( √- √-   )
  √23,32, 2√3 или ( √-   √-   )
 −√23,− -23 ,√23 .

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение. Умножим на 4 и 9 первое и второе равенство в системе соответственно и сложим их:

(       )  (       )   (      )
 9x2+ 4- +  81y2 +-4  +  9z2+ 16  = 72
      x2         y2         z2

По неравенству о средних получаем, что

(|   2  -4
|||||  9x + x2 ≥12
|{    2  4-
|||  81y + y2 ≥ 36
||||(   2  16
   9z + z2 ≥ 24

Тогда

(  2  4 )  (   2  4)   ( 2  16)
 9x + x2 +  81y + y2- +  9z +z2  ≥ 72

Следовательно, равенство достигается тогда и только тогда, когда в каждом из неравенств выполняется равенство, то есть

(|| (     2)2
|||||   3x − x  = 0
||{ (     2)2
||   9y − y  = 0
||||| (      )2
||(   3z − 4  = 0
        z

Откуда получаем

        -
(||      √6-
||||| x =± 3
|{      √2-
||| y =± 3
|||||      2√3
( z =±  3

Подставим полученные значения в третье уравнение:

  √-   √-
±2 2 ∓2 2 ±2= 2

Чтобы избавиться от иррациональности слева необходимо чтобы x  и y  были одного знака, а равенство превращается в тождество при    2√3-
z =--3 .  Таким образом, получаем 2 решения: ( √6 √2  2√3-)
  -3 ;-3-;-3 и (  √6   √2 2√3)
  −-3-;− -3 ;-3

Ответ:

(√6 √2- 2√3) (  √6   √2 2√3)
 -3 ;-3-;-3 , − -3 ;− 3-;-3

Ошибка.
Попробуйте повторить позже

Задача 6#104696

Решите уравнение

                 9
(sinx +1)(cosx+ 1) =8

Источники: ОММО - 2025, номер 6 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

В уравнении содержатся функции sin(x) и cos(x). Хотелось бы сделать какую-нибудь замену и выразить эти функции через замену. Какая замена может подойти?

Подсказка 2

Верно! Универсальная тригонометрическая замена t = tg(x/2) вполне подойдет. Тогда sinx = 2t/(1+t²) и cosx = (1-t²)/(1+t²). Но эта замена не совсем "бесплатная". Что еще нужно проверить?

Подсказка 3

Верно! Нужно проверить, что tg(x/2) определен! Могут ли быть решениями такие x, что для x/2 не определен тангенс?

Подсказка 4

Подставляя x = π + 2πn при целых n в уравнение, получаем, что ни один такой x решением не является, а значит, можно сделать нашу замену! Однако при простом раскрытии скобок в уравнении возникнет четвертая степень t! Можно ли этого избежать?

Подсказка 5

Конечно! Приведя к общему знаменателю и раскрыв скобки, не будем сразу умножать на знаменатель, а заметим, что в числителе выделяется полный квадрат! Как тогда упростить уравнение?

Показать ответ и решение

Первое решение.

Если x= π+ 2πn,n ∈ℤ,  то                       9
(sinx+ 1)(cosx+ 1)= 1⋅0⁄= 8,  поэтому можно сделать универсальную тригонометрическую подстановку и получить при      x
t= tg 2  уравнение

(  2t    ) (1− t2   )  9
 1+-t2 + 1 1+-t2 + 1 = 8

     2
2(t+-1)22-= 9
(1+ t)   8

t+-1-= ±3
1+ t2    4

            2
4t+ 4= ±(3+ 3t )

[
  3t2− 4t− 1= 0
  3t2+4t+ 7= 0

       ∘-----
3t= 2±  22+ 3

        2± √7
x= 2arctg--3-- +2πn,n∈ ℤ

________________________________________________________________________________________________________________________________________________________________________________________________________________

Второе решение.

Раскроем скобки

sinx +cosx+ sinxcosx = 1
                    8

Так как

                   2
sinxcosx= (sinx+-cosx)-−-1,
               2

то

sinx +cosx+ (sinx+-cosx)2− 1-− 1= 0
                 2         8

Сделаем замену t= sinx+ cosx :

   t2−-1- 1
t+  2  − 8 =0

Откуда

⌊    1
|| t= 2
⌈     5
  t= −2

Так как sin x+ cosx≥ −2,  то при      5
t =− 2  равенство не выполняется, следовательно,

sinx+ cosx= 1
          2

Представим левую часть в виде синуса суммы:

sin(x+ π)= -1√-
       4   2 2

Откуда

⌊    π       √2
|| x+ 4 = arcsin 4-+2πk
|⌈    π          √2       ,k ∈ℤ
  x+ 4 = π− arcsin 4-+ 2πk

⌊        √ -
| x= arcsin--2− π +2πk
||         4   4√-       ,k ∈ℤ
⌈ x= 3π− arcsin -2+ 2πk
     4        4
Ответ:

 2arctg 2±√7 +2πn,n∈ ℤ
       3

Ошибка.
Попробуйте повторить позже

Задача 7#104697

Найдите все значения параметра a  , при которых уравнение

 2x    x     x
4  +5 ⋅4  =a ⋅4 + 6

имеет хотя бы один корень на отрезке [1;1]
 2 .

Источники: ОММО - 2025, номер 7 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Оперировать степенными функциями не очень удобно. Подумайте, можно ли что-то с ними сделать, чтобы сделать исходное выражение более приятным на вид? Как при этом изменится отрезок, на котором нам необходимо, чтобы был хотя бы один корень?

Подсказка 2

Да, замена действительно бы не помешала. Подумайте, может получится вывести какую-то зависимость между параметром и некой функцией от нашей замены?

Подсказка 3

С помощью зависимости можно было бы удостовериться, соответсвует ли каждому значению функции на нашем отрезке какое-то значение параметра. Попробуйте припомнить какой-нибудь метод, который позволит нам проанализировать, как себя ведет функция на заданном отрезке.

Показать ответ и решение

Сделаем замену t=4x  и будем искать решения при 2≤ t≤4.  Тогда уравнение принимает следующий вид:

 2
t + (5− a)t− 6= 0

    2
at= t+ 5t− 6

Так как t⁄= 0,  то

a= t+ 5− 6= f(t)
         t

Возьмем производную f(t)  и покажем, что функция возрастает

 ′      -6
f(t)=1 +t2 > 0

Так как f(t)  непрерывна и монотонно возрастает при t∈ [2;4],  то она принимает на этом отрезке все промежуточные значения от f(2)  до f(4).

f(2)= 2+ 5− 6= 4
           2

f(4)= 4+5− 6 = 7,5
           4

Следовательно, нам подходят a ∈[4;7,5].

Ответ:

 [4;7,5]

Ошибка.
Попробуйте повторить позже

Задача 8#104698

Гора имеет форму прямого кругового конуса с вершиной в точке C  . Точка O  — центр основания, точка A  лежит на окружности основания конуса, а точка B  — на отрезке CA  , причем CA =180,AB = 20,OA= 30  . Железная дорога проложена по кратчайшему пути вокруг горы из точки A  в точку B  . Точка H  — ближайшая к вершине горы из всех точек железной дороги. Найдите длину пути BH  (по железной дороге).

Источники: ОММО - 2025, номер 8 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

В условии сказано про кратчайший путь, но не сразу понятно, как изобразить его на конусе. Что хочется сделать, чтобы всё-таки нарисовать этот путь на рисунке?

Подсказка 2

Да! Рассмотрим развёртку боковой поверхности конуса. Как тогда будет выглядеть кратчайший путь?

Подсказка 3

Верно! Считается известным, что самый короткий путь от точки до прямой — это перпендикуляр, опущенный на эту прямую и проходящий через данную точку. Поэтому СH — высота треугольника ACB. Теперь нужно аккуратно посчитать.

Подсказка 4

В треугольнике ABC известны две стороны, а угол опирается на дугу окружности радиуса CA, длину которой мы можем найти. Чему тогда равен этот угол? Какую теорему теперь можно применить?

Подсказка 5

Длина окружности основания равна 2πOA. Тогда ∠ACB = 2πOA/CA = 60π/180 = π/3 = 60°. Теперь применим теорему косинусов для треугольника ABC и найдем AB. Теперь можем применить теорему синусов. Синус какого угла хочется выразить?

Подсказка 6

Да! Запишем теорему синусов для ∠B и ∠C и найдём sin∠B. Осталось не забыть, что треугольник CBH — прямоугольный. Значит, зная угол и сторону, можно найти и всё остальное!

Показать ответ и решение

PIC

Кратчайшим путём вокруг горы на развёртке конуса будет отрезок AB  . Точка H  — ближайшая к вершине C  , а значит CH  — высота в треугольнике ABC  . Длина окружности основания равна 2πOA = 2π  . 30 =60π  , поэтому

∠ACB = 2πOA-= 60π= π = 60∘
        CA    180  3

Итак, в треугольнике ABC  известны длины сторон AC =180,BC =160  и ∠C = π3  , а надо найти BH  . По теореме косинусов

AB =∘AC2-+-BC2-− 2-⋅AC-⋅BC-⋅cos∠C-= √32400+-25600-− 28800-=20√73.

По теореме синусов

                 √-
sin∠C-= sin∠B-;  ---3√---= sin∠B-;
 AB     AC     2⋅20  73    180

откуда

        9√3-           7
sin∠B = 2√73;  cos∠B = 2√73

Наконец, треугольник CBH  прямоугольный и

BH = BC ⋅cos∠B = 160⋅-√7--= 5√60
                   2  73    73
Ответ:

√560-
  73

Ошибка.
Попробуйте повторить позже

Задача 9#104699

График функции y(x)= −x4+ 2x3+3x2− 8x+ 3
                   3  имеет две точки максимума и одну точку минимума. К графику провели касательную с двумя точками касания. Найдите длину отрезка касательной между точками касания.

Источники: ОММО - 2025, номер 9 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Пусть касательная это g(x). Тогда y(x)-g(x) имеет два кратных корня из касания. Это позволяет записать какие-то уравнения, связывающие функцию с точками касания.

Подсказка 2

Раз эти функции равны, то можно записать равенства коэффициентов при степенях многочленов. Отсюда можно получить абсциссы точек касания и уравнение касательной.

Подсказка 3

Точки касания должны получиться с x=-1 и x=2. Теперь остаётся только вычислить значения функции и применить теорему Пифагора.

Показать ответ и решение

Пусть g(x)=kx +b  — касательная из условия и x ,x
 1  2  — координаты точек касания на оси x.

Так как y(x)− g(x) =0  в точках касания, то они являются корнями чётной кратности данного многочлена (y(x)− g(x)).  Также в силу того, что коэффициент при старшей степени x  равен − 1,  можем представить многочлен в следующем виде:

                 2      2
y(x)− g(x) =− (x− x1)(x− x2)

Назовем правую часть f(x),  тогда:

            2      2    4          3   2         2 2                 2 2
f(x)= −(x− x1) (x − x2) = −x + 2(x1+ x2)x − (x1+ 4x1x2 +x2)x +2x1x2(x1+ x2)x− x1x2

Запишем полученные для функций условия в точках касания в систему:

(||              4   3    2  (8   )
||{  y(x)− g(x)= −x + 2x  +3x −  3 + k x +3− b
||  f(x)= −x4+ 2(x1+ x2)x3− (x2 +4x1x2+x2)x2+2x1x2(x1+ x2)x − x2x2
||(  y(x)− g(x)= f(x)         1         2                   1 2

Из равенства коэффициентов следует:

(||  2= 2(x1+ x2)
|||||
||{  3= −(x21+ 4x1x2+x22)
||   (8   )
|||||  − 3 + k = 2x1x2(x1+x2)
||(  3− b= −x2x2
          1 2

Отсюда можно выразить x1+x2  и x1x2  :

{ x1+ x2 =1
  x1x2 =− 2

То есть x1 = 2,  x2 =− 1.  Теперь можно найти коэффициенты k  и b:

(
|{  k= 4− 8= 4
|        3  3
(  b= 3+4 =7

Получается, что       4
g(x)= 3x+7.

Значения касательной в точках касания:

       4       29
g(x1)= 3 ⋅2+ 7= 3

g(x2)= 4 ⋅(−1)+ 7= 17
      3          3

Тогда длина отрезка касательной между точками касания — пусть l:

   ∘--------------------
               (29  17)2  √-----
l=  (2− (− 1))2+  3-− 3-  =  9 +16= 5

Получили искомое значение длины отрезка касательной между точками касания — 5.

Ответ:

5

Ошибка.
Попробуйте повторить позже

Задача 10#104700

В классе 28 учеников, у каждого ровно 3 друга среди одноклассников. Однажды на каникулах семеро учеников подписались на канал по олимпиадной математике. После этого ученики стали общаться между собой. Когда ученик узнаёт, что хотя бы двое из его друзей уже подписались на канал, он также подписывается на этот канал. Могло ли в итоге случиться, что весь класс подписался на канал?

Источники: ОММО - 2025, номер 10 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

В задачах на процессы и с вопросом "могло ли" очень часто работает идея полуинварианта — давайте поищем какую-то характеристику, которая монотонно убывает или возрастает (либо же меняется совсем чуть-чуть), и мы можем за ней проследить)

Подсказка 2

Рассмотрите количество пар друзей, где один подписан на канал, а другой — нет.

Подсказка 3

Количество указанных пар не возрастает! Теперь надо понять, а какие у неё значения в начале процесса и в конце :)

Показать ответ и решение

Будем называть пару друзей хорошей, если эта пара образуется между подписчиком и не подписчиком канала.

Заметим, что каждый раз, когда ученик подписывается на канал по олимпиадной математике, количество хороших пар уменьшается хотя бы на 1.

Всего у каждого из семи подписанных на канал учеников может быть не более трёх хороших друзей. Следовательно, изначально количество хороших пар не превышает 21. Рассмотрим момент, когда на канал подписались все ученики, кроме одного. Тогда в момент, когда подпишется последний ученик, количество хороших пар уменьшится уже на 3, следовательно, подписок может быть не более чем 19. Так как в классе всего 28 человек, то весь класс не может быть подписан на канал.

Ответ:

Нет, не могло

Ошибка.
Попробуйте повторить позже

Задача 11#109558

На окружности через равные промежутки отметили 400  точек и провели все возможные хорды между ними. Хорду с концами в отмеченных точках назовем “чётной”, если на большей дуге, которую она стягивает, лежит чётное число точек. В противном случае хорда “нечётная”. Рядом с каждой вершиной написано число. Сумма квадратов этих чисел равна 100.  На каждой хорде написано произведение чисел, стоящих на её концах. Сумма чисел на “чётных” хордах равна a,  сумма чисел на “нечётных” хордах равна b.  Найдите наибольшее возможное значение величины a− b.

Источники: ОММО - 2025, номер 2 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Для начала пронумеруем все точки на окружности. Что можно сказать про номера точек, стягивающих четную хорду?

Подсказка 2

Верно, они разной чётности! Теперь самое сложное — нужно придумать какое-то выражение, в котором будут участвовать все числа, данные нам в условии. В каком выражении мы можем встретить сумму квадратов и попарные произведения?

Подсказка 3

Верно, в каком-нибудь квадрате! Рассмотрите квадрат знакопеременной суммы чисел на окружности и аккаратно раскройте его:) Не забудьте привести пример!

Показать ответ и решение

Обозначим числа, стоящие рядом с точками на окружности, как: a,a ,...,a  .
 1 2    400

Оценка. Рассмотрим произвольную хорду anak,n < k.  Пусть на большей дуге, которую она стягивает, лежит x  точек. Тогда на меньшей дуге лежит 400− x− 2= 398− x  точек. Очевидно, что числа x  и 398 − x  одной чётности, поэтому мы можем определять чётность хорды по любой из дуг, которую она стягивает. Между точками an  и ak  лежит n − k− 1  точка, откуда мы можно сделать вывод о том, что хорда anak  чётная, если числа n  и k  разной чётности, и нечётная в противном случае.

Теперь рассмотрим следующее выражение:

(a1− a2+ a3− a4+⋅⋅⋅+a399 − a400)2

Раскроем скобки: в сумме будут квадраты и попарные произведения всех слагаемых, при этом перед слагаемым aiaj  будет стоять минус, если числа i  и j  разной чётности, и плюс в противном случае. Сумма квадратов всех слагаемых равна 36, сумма всех чисел  aiaj,  где i  и j  разной чётности, это сумма чисел на чётных хордах (посчитанная дважды!), которая равна a.  Аналогично, сумма всех чисел aiaj,  где i  и j  одной четности, равна удвоенной сумме чисел на нечётных хордах, то есть равна 2b.  Таким образом, данное выражение равно:

(a1− a2 +a3− a4+ ⋅⋅⋅+a399− a400)2 = 100+2b− 2a

Тогда

                                        2
2(a − b)= 100− (a1− a2+ a3− a4 +⋅⋅⋅+ a399− a400) ≤ 100

Итак, максимальное значение a − b  равно 50.

Пример. a = 1
 i  2  для всех i.

Ответ: 50
Рулетка
Вы можете получить скидку в рулетке!