Верченко - задания по годам → .05 Верченко 2024
Ошибка.
Попробуйте повторить позже
Катя и Юра играют в следующую игру. Имеется пустая таблица из одной строки, состоящая из пустых ячеек: (
),
которые игроки заполняют числами от 0 до 2022. Первым ходит Юра, который выбирает число
такое, что
и заполняет
ячеек. Второй ходит Катя, которая заполняет оставшиеся ячейки. Победитель определяется по следующему правилу: если в результате
получается «счастливая» комбинация чисел - полностью заполненная таблица, в которой числа можно разбить на две непересекающиеся
группы, суммы чисел в которых одинаковы, то выигрывает Катя, в противном случае выигрывает Юра. Например, комбинация (
)
не является «счастливой», так как в ней присутствует нечетное число нечетных чисел. С другой стороны, комбинация
является «счастливой», так как
. У кого из игроков имеется выигрышная стратегия? Ответ
обосновать.
Источники:
Очевидно, что достаточно рассмотреть случай, когда игрок, делающий первый ход, заполняет максимально возможное число ячеек, равное
. Расположим эти
число в порядке не убывания:
. Здесь в индексах указаны номера позиций, на
которых стоят эти числа в таблице. Образуем два множества позиций, которые заполнены:
и
, беря
указанные числа через одно. Тогда суммы чисел на этих позициях могут отличаться друг от друга не более, чем на 2022.
Поэтому оставшуюся незаполненной позицию можно заполнить числом от 0 до 2022 так, чтобы получилась «счастливая»
комбинация.
Ошибка.
Попробуйте повторить позже
Каждый из трех владельцев криптокошельков имеет на своем счету по 10 криптокойнов. Каждый из двух дней ими совершаются по две
транзакции: по переводу части криптокойнов со своего криптокошелька на криптокошелек другого владельца и по возврату
оставшихся криптокойнов обратно на свой кошелек. У каждого имеется свой секретный ключ . При совершении
транзакции указываются три числа
, где
- число переводимых криптокойнов,
- электронная подпись
перевода.
Электронная подпись находится по правилу: выбираем произвольное , затем находим
,
где
остаток от деления числа
на
. На рисунке указаны совершенные транзакции (пронумерованы числами в кружках) за
два дня. Сколько будет криптокойнов у каждого владельца криптокошелька по окончании двух дней?
Источники:
Сначала по рисунку выпишем очевидные соотношения:
Необходимо найти:
Далее, заметим, что транзакции №1 и №8 осуществлены одним и тем же владельцем владельцем 1. То есть использовался один и тот же
секретный ключ , при этом использовалось одно и то же значение
в подписи, поэтому
Отсюда получим
Следовательно, . С учетом (2) имеем:
.
Аналогичное свойство замечаем у транзакций №5 и №12:
Отсюда получим
Следовательно
С учетом (4) имеем: и уже находится
. Теперь обратим внимание на транзакции №9 и №10,
осуществленные владельцем 2 , для которых, как нетрудно заметить, использовались одинаковые
, но с разными знаками, т.к.
.
Поэтому:
Отсюда получим:
Т.к. исходная сумма криптокойнов была равна 30 , то
Ошибка.
Попробуйте повторить позже
a) перестановка чисел
задана таблицей:
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 3 | 2 | 4 | 0 | 5 | 6 | 1 |
Например, . Найдите две различные перестановки
и
такие, что для всех
выполняется
b) перестановка задана на чётном количестве чисел
таблицей:
| 0 | 1 | 2 | .. | | |
| | | | .. | | |
Здесь - перестановка чисел
.
Докажите, что не существует перестановок и
таких, что для всех
выполняется
Источники:
а) Так как то
и
являются перестановками. Но тогда, например,
и выполняется
b) Из условия получим
С другой стороны, если указанное условии пункта b) представление существует, то
а это доказывает невозможность указанного представления.
Ошибка.
Попробуйте повторить позже
В криптосистеме RSA (знания алгоритма шифрования не требуется для решения задачи) элементы надёжности определяются несколькими
параметрами. В частности, выбором числа , где
— различные нечётные простые числа, и значением
Известна следующая теорема (малая теорема Ферма): если — простое число,
— целое число, не делящееся на
,
то
Используя это:
a) докажите, что
для всех .
b) найдите и
, если известно, что
для всех
Источники:
a) из условия задачи и равенства следует
для любого натурального . Тогда при
получим
Аналогично
Так как - простые числа, то из этих полученных выше равенств следует
b) из доказанного в пункте (а) получим а отсюда систему
Решением в нечётных простых числах является неупорядоченная пара
b)
Ошибка.
Попробуйте повторить позже
Четыре компьютера, расположенные в вершинах квадрата , соединены прямолинейными отрезками проводов с сервером, который
находится в точке пересечения диагоналей
. Сторона квадрата равна 2 м. Несложно заметить, что для такого подключения потребуется
метров провода. Чтобы уменьшить длину проводов, вам разрешается передвинуть сервер из точки
в любую другую
точку
, а также компьютер из точки
в любую другую точку
так, чтобы новая суммарная длина проводов
была как можно меньше. Разрешается компьютеры и сервер размещать в одной точке (например, точка
может совпасть с точкой
). Компьютеры в вершинах
двигать нельзя. Чему равно минимальное значение
?
Источники:
Заметим, что точки и
совпадают.
Действительно, пусть минимум достигается на конфигурации, где это не так. Но тогда, сдвинув точку в точку
, мы длину проводов уменьшим. Таким образом, компьютер
и сервер
должны оказаться в некоторой точке
Покажем, что лежит на диагонали
.
Предположим обратное. Пусть — основание перпендикуляра, опущенного из точки
на прямую
. Покажем, что сумма
расстояний от точки
до вершин
, которую обозначим
, меньше аналогичной суммы
. Длина проекции меньше длины наклонной, поэтому
. Чтобы доказать, что
отразим отрезок относительно прямой
(при этом точка
перейдет в точку
, точка
— в точку
).
Точки окажутся на одной прямой. Тогда
, и при этом
.
Неравенство (1) доказано. Следовательно,
, а значит, искомая точка
должна лежать на диагонали.
Пусть . Рассмотрим функцию
На отрезке функция
принимает минимальное значение в точке
а само минимальное значение
равно
Ошибка.
Попробуйте повторить позже
Вася хочет заполнить квадратную таблицу (криптографическую мозаику) размера целыми числами от 1 до 16 по
следующему правилу. Сначала он выбирает четыре целых числа
. Затем первую строку Вася заполняет
числами
вторую строку — числами
третью
и, аналогично, четвертую
При этом числа Вася выбрать должен так, чтобы все числа в таблице оказались различными. Сумеет ли Вася это сделать?
Если да, то чему равны
?
Источники:
Заметим, что
Представим остатки полученных от
в виде круга остатков. Числа получаются от
смещением на
или
шага по часовой
или против часовой стрелки в зависимости от знака.
Заметим, что важен лишь набор , а не их порядок, тогда без ограничения общности выберем пару
,
— одно из чисел
или такое число, которого нет в таблицы. Докажем, что
тогда обязательно соседняя с
.
Предположим противное, то есть что ни одна пара ,
не являются соседями (так как иначе можем взять их в качестве
,
).
случай (
): возьмём
(если все различные числа сдвинуть на одинаковое число по модулю
, то они
останутся одинаковыми, а значит мы можем взять
), в таблицу уже попали числа:
, тогда “запрещённые” позиции —
(они получены путём прибавления и вычитания
,
по модулю
к полученным клеткам в таблице), а значит,
—
, но тогда они соседи — противоречие.
случай (
): переименуем
,
в
,
и получится случай 1.
случай (
аналогично, без ограничения общности, не входит в таблицу): Все остальные числа входят, так как с каждой
в таблицу
добавляются по 4 числа. Рассмотрим число
, у нас уже "запрещены"числа
для
, иначе
входит в таблицу и
,
иначе в таблице есть повторяющиеся числа, тогда
,
получается, что
, т.е.
.
Посмотрим на “запрещённые” числа для :
, но
снова соседние.
Мы получили, что обязательно должны быть 2 соседних числа. С одной стороны, зачёркнутые ячейки на расстоянии от
и
образуют место для
и
(поскольку есть две свободные ячейки вокруг двух зачеркнутых чисел). С другой стороны, при выборе двух
, набор двух оставшихся определяется однозначно, поэтому итого вариантов выбора комбинации столько же, сколько и выбор двух подряд
идущих чисел в круге, т.е.
.