Тема БИБН (Будущие исследователи - будущее науки)

БИБН - задания по годам .04 БИБН 2022

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела бибн (будущие исследователи - будущее науки)
Разделы подтемы БИБН - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#74464

Решите неравенство

            2
f(f(x))<(f(x)) ,

где f(x)= 2x2 − 1.

Источники: БИБН-2022, 11.1 (см. www.unn.ru)

Показать ответ и решение

Пусть y =f(x)= 2x2− 1.  Тогда по условию

  2     2
2y − 1 <y

− 1< y < 1

После обратной замены

0 <2x2 < 2

0< |x|< 1
Ответ:

 (−1;0)∪ (0;1)

Ошибка.
Попробуйте повторить позже

Задача 2#74465

Найдите наибольшее и наименьшее значение функции

y = (arcsinx)⋅(arccosx)

Источники: БИБН-2022, 11.2 (см. www.unn.ru)

Показать ответ и решение

Значения arcsinx  и arccosx  при любом x ∈[−1;1],  как известно, связаны соотношением

               π
arcsinx+ arccosx = 2

Таким образом, требуется исследовать функцию

y(t)= t(π∕2− t),

где           [  π π]
t= arcsin x∈ − 2;2 .  Данная квадратичная функция с отрицательным старшим коэффициентом принимает наибольшее значение в точке   π
t= 4  (вершине параболы), равное π2
16.  Наименьшее значение принимается на границе промежутка [ π π]
− 2;2 ,  а именно, в точке     π
t=− 2  и оно равно   π2
−  2  (на другом конце промежутка, при    π
t = 2,  значение равно нулю). Соответствующие значения x,  в которых достигаются наибольшее и наименьшее значения функции, таковы:    √2
x=  2  и x =− 1.

Ответ:

 π2,− π2
 16   2

Ошибка.
Попробуйте повторить позже

Задача 3#74467

Числа x,y  удовлетворяют уравнению

∘ -3--- ∘ -3---  ∘-3---  ∘-3---
  x +y +  y +x =  x + x+  y + y

Можно ли утверждать, что x= y?

Источники: БИБН-2022, 11.3 (см. www.unn.ru)

Показать ответ и решение

Сначала исследуем ОДЗ переменных. Поскольку

 3         ( 2   )
x + x≥ 0⇔ x x + 1 ≥0,

то x≥ 0.  Аналогично, y ≥0.  Таким образом, для неотрицательных x,y  обе части неравенства имеют смысл и неотрицательны. Поэтому возведение в квадрат обеих частей приводит к равносильному выражению, которое, (после сокращения) запишется так:

∘ -3-3------4---4  ∘-3-3-------3---4-
  x y +xy +x + y =  x y + xy+xy + x y

После возведения в квадрат и уничтожения подобных членов оно примет вид:

 4  4    3   3
x +y − xy − xy =0

x3(x− y)− y3(x − y)= 0

(x− y)(x3− y3)= 0

(x − y)2(x2 +xy+ y2)=0

[                [
  x− y =0      ⇔   x =y
  x2 +xy+ y2 = 0    x =y =0

Второе выражения это верно, т.к. x ≥0  и y ≥ 0.

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 4#74468

Докажите, что существует бесконечное множество троек натуральных чисел x,y,z,  удовлетворяющих соотношению x2+y2 = z2022.

Источники: БИБН-2022, 11.4 (см. www.unn.ru)

Показать доказательство

Возьмем пифагорову тройку, например, (3;4;5),  и будем рассматривать соотношения

   2    2     2
(3t) + (4t) =(5t)

для различных натуральных t.  Если положить

 2   2 2    2  2022    2
x = 9t ,y  =16t,z   = 25t ,

то взяв число z,  делящееся на 5, т.е. z =5n  для натурального n,  получим

25t2 = 52022n2022 ⇔ t= 51010n1011

Таким образом, при любом натуральном n  числа вида x= 3t,y = 4t,  где t= 51010n1011,  и z = 5n  удовлетворяют исходному уравнению.

Ошибка.
Попробуйте повторить позже

Задача 5#74470

На координатной плоскости дан прямоугольник с целочисленными координатами вершин, отличный от квадрата. Докажите, что можно провести несколько прямых, параллельных сторонам прямоугольника, так, что прямоугольник разобьется на квадраты с целочисленными координатами вершин.

Источники: БИБН-2022, 11.5 (см. www.unn.ru)

Показать доказательство

Пусть ABCD  — данный прямоугольник. Без ограничения общности можно считать, что A = O  — начало координат: иначе сместим начало координат в точку A,  а в конце сделаем сдвиг на целочисленный вектор −→
AO.  Обозначим векторы     −−→
⃗u= OD =(p;q),     −−→
⃗v = OB = (m; n),  где p  , q,m,n  — целые числа. Поскольку ⃗u  и ⃗v  взаимно перпендикулярны, их скалярное произведение равно нулю, т.е. pm +qn =0  (этот факт также следует из соотношения для угловых коэффициентов перпендикулярных прямых OB  и OD  ).

PIC

Рассмотрим сначала случай, когда p  и q  не взаимно просты. Тогда p= p1k,q =q1k,k =  НОД(p,q)> 1.  В этом случае рассмотрим на стороне OD  промежуточные точки D ,D ,...,D   ,
  1 2     k−1  где −−O→D = (pi;qi),i=
  i   1  1  1,2,...,k− 1.  Проведём через точки D
 i  прямые, параллельные стороне OB.  Они пересекут сторону BC  в точках  ′
Di,  где −−→′  −−→   −−→′  −−→   −−→
ODi = OB + BDi = OB + ODi = (m+ p1i;n+ q1i).

Таким образом, точки Di  и  ′
Di  имеют целочисленные координаты и тем самым, прямые    ′
DiDi(i= 1,2,...,k− 1)  разбивают прямоугольник OBCD  на k  прямоугольников с целочисленными вершинами. Назовем это разбиением первого типа.

Аналогично, если m  и n  не взаимно просты, то прямыми, параллельными стороне OD,  разобьем OBCD  на меньшие прямоугольники с целочисленными вершинами. Назовем это разбиением второго типа; прямые этого разбиения проходят через промежуточные точки Bj  на стороне OB,  где j = 1,2,...,l− 1,  а l  — наибольший общий делитель m  и n,(m = m1l,n=  n1l),−−O→Bj = (m1j;n1j).  Заметим, что в случае, когда одновременно k> 1  и l>1,  прямые первого и второго разбиений разбивают прямоугольник OBCD  на k⋅l  равных прямоугольников с вершинами в точках Mij,  где −O−M−i→j = −−O→Di+ −O−→Bj =(p1i+ m1j;q1i+ n1j),i  =1,2,...,k,j = 1,2,...,l,  т.е. все вершины имеют целочисленные координаты.

Итак, приходим к случаю, когда координаты каждого из векторов ⃗u,⃗v  взаимно просты. Но тогда из равенства pm =−qn  получим, что p =±n,q = ±m  (действительно, из этого равенства следует, что p  делится на n  и, в то же время, n  делится на p,  значит, p =±n;  аналогично, q = ±m,  с учетом знака в данном равенстве). В этом случае стороны прямоугольника OBCD  равны: |OD|= ∘p2-+q2 = √n2+-m2 =|OB|,  и наш прямоугольник квадрат.

Рулетка
Вы можете получить скидку в рулетке!