Тема БИБН - задания по годам

БИБН 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела бибн - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#79609

Дан треугольник ABC  , в который вписана окружность с центром O  . Пусть M  и N  — точки касания вписанной окружности со сторонами AB  и AC  . Известно, что AO = 2⋅MN.  Найдите ∠A.

Источники: БИБН - 2024, 11.1 (см. www.unn.ru)

Подсказки к задаче

Подсказка 1

У нас имеется отношение AO/MN=2. Мы все прекрасно помним, что отношение длин отрезков на окружности легко переносится на отношение синусов уголочков. Почему бы нам тогда не найти окружность, у которой есть хорды AO и MN...

Подсказка 2

Она легко находится- это окружность, построенная на AO как на диаметре. Тогда мы можем написать расширенную теорему синусов: MN/sin∠A=2R=AO. Тогда мы получаем, что sin∠A=MN/AO=1/2. Не забудьте, что синусы смежных уголков равны и найдите уголочек!

Показать ответ и решение

Пусть ∠A = 2α.  Обозначим через точку K  пересечение MN  и AO  . Тогда, если радиус окружности равен r  , то из прямоугольного треугольника MKO

1                 ∘
2MN = MK  =r⋅sin(90 − α)= r⋅cosα

PIC

Выразим AO  из прямоугольного треугольника AMO

AO = -r--
     sinα

Подставляя в AO = 2⋅MN  , получаем

         -r--
4r⋅cosα= sinα

      1
sin2α= 2

      ∘     ∘
2α = 150 или 30 как угол треугольника.

Ответ:

 150∘ или 30∘

Ошибка.
Попробуйте повторить позже

Задача 2#79610

Для всех действительных параметров a∈ [0;1]  определите число корней уравнения

||  11π ||
||sin 24 x||= a

на полуинтервале [0,24).

Источники: БИБН - 2024, 11.2 (см. www.unn.ru)

Подсказки к задаче

Подсказка 1

Давайте сразу избавимся от модуля и получим 2 простых тригонометрических уравнения, которые мы очень хорошо знаем со школы. Как будут выглядеть решения на тригонометрической окружности при разных a?

Подсказка 2

Верно, при a ∈ (0,1) каждое из уравнений даёт нам по 2 точки, при a ∈ {0,1} по одной. Теперь же нам важно, сколько полукругов мы успеем "навернуть" при x ∈ [0;24), давайте оценим это выражение.

Подсказка 3

Верно, мы успеем пройти 11 полуокружностей, сколько в каждом случае тогда мы получим решений?

Показать ответ и решение

Линейное по x  выражение 11πx∈ [0,11π)
24  при x∈ [0,24)  . Рассмотрим тригонометрическую окружность. Если a∈ (0,1)  , то решению ||  11π-||
sin 24 x = a  соответствует 4  точки на окружности, по 2  на каждой полуокружности, которых всего 11  , так как аргумент принимает значения из [0,11π)  . Итого 11⋅2= 22  решений.

Если a= 0  , то подходят точки вида πk, k∈ ℤ  . То есть 11  решений в этом случае.

Если a= 1  , то на каждой полуокружности подходит по одной точке вида π
2 + 2πk  . То есть 11  решений всего.

Ответ:

 11  решений при a∈{0;1}

22  решения при a∈ (0;1)

Ошибка.
Попробуйте повторить позже

Задача 3#79611

(a) Изобразите на координатной плоскости множество A  , заданное неравенством

 2 2
x y < 2− xy

(b) Докажите, что любые две точки множества A  можно соединить внутри A  либо отрезком, либо ломаной из двух звеньев.

Источники: БИБН - 2024, 11.3 (см. www.unn.ru)

Подсказки к задаче

Пункт а, подсказка 1

Мы имеем что-то похожее на квадратное неравенство. Без зазрения совести обозначим xy за t. Надо решить неравенство t²+t-2<0. Какое неравенство для xy это даст?

Пункт а, подсказка 2

Верно, -2<xy<1. Рассмотрите отдельно случаи xy>0 и xy<0 и постройте нужное множество.

Пункт б, подсказка 1

Будем надеется, что эти гиперболы мы не просто так рисовали. С точками, которые можно соединить отрезком все как-то мутно, а вот с ломанными все гораздо веселее. Хочется упростить себе задачу и не думать о совсем произвольной ломанной, а, например, с фиксированной точкой...

Пункт б, подсказка 2

Предлагаю доказать, что мы можем просто соединить любую точку с точкой (0,0), откуда все и будет следовать. Но доказать это вам придется самостоятельно...

Пункт б, подсказка 3

Ладно уж, застыдили! Посмотрите, что происходит с модулем значения xy, при приближении к точке (0,0), и с помощью этого докажите, что если X лежит в нашем множестве, то и отрезок XO тоже.

Показать ответ и решение

(a) Решим неравенство относительно замены t= xy

 2
t + t− 2 <0 ⇐ ⇒  t∈ (− 2,1)

То есть xy ∈(−2,1)

В случаях x,y > 0  и x,y < 0  в первой четверти получаем часть плоскости под графиком y = 1
   x  , а в третьей четверти часть плоскости над этим графиком.

В случае x<,y > 0  во второй четверти неравенству удовлетворяет часть плоскости под графиком     2
y = −x  , а в четвертой — часть плоскости над этим графиком.

PIC

(b) Приведем явный алгоритм соединения двух точек получившегося множества A  . Будем соединять любые две точки B  и D  через точку (0,0)  . Для этого надо показать, что любая прямая, соединяющая точку множества и (0,0)  , лежит в множестве. Заметим, что при приближении из B = (x0,y0)  в (0,0)  по прямой произведение xy  по модулю уменьшается, а значит, если точка B  из множества, то и прямая из нее в (0,0)  тоже. Тем самым показали, что соединять B  и D  можно соединением B  с (0,0)  и D  c (0,0).

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 4#79612

Можно ли утверждать, что если для рациональных чисел a,b,c  сумма

 √-   √-   √-
a 2 +b 3+ c 6

является рациональным числом, то a= b=c =0?

Источники: БИБН - 2024, 11.4 (см. www.unn.ru)

Подсказки к задаче

Подсказка 1

Давайте предположим, что это возможно, и обозначим нашу сумму за p. Первое, что бросается в глаза, это то, что √2*√3=√6, поэтому хочется отправить с√6 направо и возвести в квадрат. После возведения в квадрат из иррациональных чисел остается только √6, значит можно его выразить через остальные рациональные...

Подсказка 2

После преобразований мы получаем, что √6=(6c²+p²-2a²-3b²)/(2ab+2pc). Казалось бы победа, мы получили выражение иррационального числа через рациональные, что невозможно. Но ведь мы могли поделить на 0. Что делать, если 2ab+2pc=0?

Подсказка 3

Если ab+pc=0, то 6c²+p²=2a²+3b². Рассмотрим случай с≠0: подставим p=-ab/c в равенство 6c²+p²=2a²+3b². После тождественных преобразований получаем (3с²-a²)(2c²-b²)=0. Найдите здесь противоречие и рассмотрите случай с=0!

Показать ответ и решение

Обозначим a√2+ b√3+ c√6= p∈ ℚ.

Тогда  √ -  √ -     √-
a  2+b  3=p − c 6  . Возведем в квадрат

 2    2    √-   2   2    √ -
2a + 3b +2ab 6= p + 6c − 2pc  6

В случае a= 0  или b= 0  получаем, что левая часть равенства рациональна, а значит и правая тоже, то есть p= 0  или c= 0  . Если имеет место случай c= 0  , то a =b= c= 0.

В случае же p =0  (не умаляя общности a =0  ) получаем

 √-   √-
b 3+ c 6= 0

b+ c√2= 0

И так как b∈Q  , равенство возможно только в случае c =0  . И тогда также b= 0.  То есть если a =0  или b= 0  , то требуемое верно.

Пусть теперь a,b⁄= 0  . Преобразуем:

  2   2   2   2   √ -
2a + 3b − p − 6c= − 6(2ab+ 2pc)

Равенство возможно только в случае, если справа рациональное число, то есть ab= −pc  . Тогда получаем следующую систему

{  2a2+ 3b2 = p2+ 6c2
   6a2b2 = 6p2c2

Эта система имеет вид

{
  x+ y = z+ t=s
  xy = zt=q

По следствию теоремы Виета x,y  и z,t  являются корнями уравнения n2 − sn+ q = 0  . Но у квадратного уравнения максимум 2  корня, поэтому либо x= z  и y = t  , либо x= z  и y = z  .

В первом случае получаем 2a2 = p2  , что невозможно, кроме разобранного случая a= p= 0.

Во втором случае 2a2 = 6c2  , также невозможно, если a,c⁄= 0.

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 5#79613

В клетчатом квадрате 8 ×8  две клетки одной строки или столбца назовем диполем, если между ними ровно две клетки. Петя решил отметить как можно больше диполей, закрашивая разными цветами разные диполи (а обе клетки одного и того же диполя — одним цветом). Какое наибольшее количество диполей он сможет закрасить?

Источники: БИБН - 2024, 11.5 (см. www.unn.ru)

Подсказки к задаче

Подсказка 1

Это клетчатая задачка на оценку + пример, в которой даже персонаж намекает на способ решения, ведь он как-то там хитро закрашивает доску. А не поможет ли нам какая-то раскраска для получения оценки? Они часто помогают в таких задачах)

Подсказка 2

Давайте разобьём квадрат на 9 маленьких квадратиков 2 на 2 так, что между любыми двумя расстояние в 1 клеточку, и покрасим каждый из них в 4 цвета так, чтобы пары одинаковых цветов могли образовывать диполь. Как нам тогда поможет такая раскраска доказать оценку?

Подсказка 3

Так как у нас нечётное кол-во каждого цвета, то как минимум 4 клетки мы потеряем, а значит, уже не более 60/2 = 30 диполей можно получить, остаётся только нарисовать правильный пример под нашу оценку.

Показать ответ и решение

Рассмотрим в нашем квадрате 9  квадратов 2× 2:

PIC

Назовём их выделенными.

Заметим, что если одна клетка некоторого диполя принадлежит какому-то выделенному квадрату, то другая клетка этого диполя принадлежит (соседнему) выделенному квадрату.

На рисунке отмечены номерами 1,2,3,4  клетки в выделенных квадратах, так что у любого диполя обе клетки должны иметь один и тот же номер. Но клеток с данным номером (например, с номером 1  ) девять, и поэтому при “распределении” клеток с номером 1  по диполям по меньшей мере одна клетка окажется нераспределённой (лишней). Таким образом, для каждого из четырех номеров остаётся нераспределённой минимум одна клетка среди выделенных квадратов, а значит, всего имеется минимум 4  нераспределенные клетки.

Получаем оценку: максимальное число непересекающихся диполей во всём квадрате 8 ×8  не больше 64−4-=30.
 2

Построим теперь пример на 30  диполей. Для этого “отрежем” левый нижний выделенный квадрат. Останется клетчатая фигура из 60  клеток, которая разбивается на квадрат 6 ×6  и два прямоугольника 6× 2  и 2×6.  Эта фигура полностью разбивается на диполи, поскольку любые последовательные 6  клеток строки или столбца, очевидно, разбиваются на три диполя.

Ответ:

 30

Рулетка
Вы можете получить скидку в рулетке!