Бельчонок 2021
Ошибка.
Попробуйте повторить позже
Решите уравнение
Подсказка 1
В уравнении встречаются как sin(x), так и cos(x), поэтому не получается так просто свести всё к одной переменной... Формулки тоже особо не применить тут, разве что синус двойного расписать. Тогда как тут можно попробовать решить, какие методы остаются?
Подсказка 2
Ага, остаётся метод оценки и разложение на множители. И если немного подумать, можно понять, что оценка тут ни к чему не приводит, тогда остаётся раскладывать на множители!
Подсказка 3
Тут можно воспользоваться методом неопределённых коэффициентов. Мы хотим получить sin²(x), тогда можем поставить в обе скобки sin(x) с коэффами A и B перед ними, при этом B сразу выражается через А. 3 можно расписывать по-разному, применяя основное тригонометрическое тождество, рассмотрите несколько способов.
Подсказка 4
Ура, разложили на множители! Остаётся решить парочку несложных уравнений (помните же про метод вспомогательного угла?) и записать ответ!
Интересный способ решения!
Угадывать разложение на множители, конечно, весело, но есть ещё один способ решения! Можно записать левую часть как стандартный тригонометрический многочлен (погуглите) и выразить скобку с sin(2x) и cos(2x) через скобку с sin(x) и cos(x) (вам может помочь возведение в квадрат). Тогда можно будет ввести замену и решить уравнение!
Запишем левую часть уравнения как стандартный тригонометрический многочлен:
Обозначим линейную часть (без коэффициента -6 ) через :
и посчитаем величину (при этом запишем её как стандартный тригонометрический многочлен):
Видно, что квадратный блок исходного уравнения может быть выражен через квадрат линейного блока:
Поэтому наше уравнение можно решать с помощью новой неизвестной :
Возвращаясь к основной неизвестной , мы получим совокупность из двух уравнений:
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!