Тема Изумруд - задания по годам

Изумруд 2023

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела изумруд - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#71019

Дарья Дмитриевна готовит зачёт по теории чисел. Она пообещала каждому студенту дать столько задач, сколько слагаемых он создаст в числовом примере

a1+ a2+...+an = 2021,

где все числа ai  — натуральные, больше 10 и являются палиндромами (не меняются, если их цифры записать в обратном порядке). Если студент не нашёл ни одного такого примера, он получит на зачёте 2021 задачу. Какое наименьшее количество задач может получить студент?

Источники: Изумруд-2023, 11.1 (см. izumrud.urfu.ru)

Показать ответ и решение

Одну задачу студент получить не может, так как 2021 не является палиндромом. Предположим, что он может получить две задачи, тогда хотя бы одно из чисел a1,a2  — четырёхзначное. Если оно начинается на 2, то вторая цифра 0 и само число равно 2002. В таком случае второе число равно 19, что не палиндром. Если же число начинается с 1, то его последняя цифра также 1 и у второго числа последняя цифра должна быть нулём, что неверно для палиндромов. Значит две задачи студент получить не мог. Пример на 3 задачи существует, например, 1111+ 888+ 22= 2021.

Ответ: 3

Ошибка.
Попробуйте повторить позже

Задача 2#71020

Существует ли многоугольник, не имеющий центра симметрии, который можно разрезать на два выпуклых многоугольника, каждый из которых имеет центр симметрии?

Источники: Изумруд-2023, 11.2 (см. izumrud.urfu.ru)

Показать ответ и решение

Пример:

PIC

Пример подходит, потому что центрами симметрии прямоугольников являются точки пересечения их диагоналей, а данный многоугольник не имеет центра симметрии, так как если он лежит вне синего отрезка, проходящего через середину одной из сторон, левые вершины многоугольника перейдут не в точки многоугольника, а если он лежит вне красного отрезка, проходящего через середину другой стороны, то верхние вершины многоугольника перейдут не в точки многоугольника.

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 3#71021

Положительные числа a,b,c,d  таковы, что числа a2,b2,c2,d2  в указанном порядке составляют арифметическую прогрессию и числа --1--
a+b+c  , --1--
a+b+d  , --1--
a+c+d  , -1---
b+c+d  в указанном порядке составляют арифметическую прогрессию. Докажите, что a =b= c= d  .

Источники: Изумруд-2023, 11.3 (см. izumrud.urfu.ru)

Показать доказательство

Запишем характеристическое свойство для каждой арифметической прогрессии:

 2  2   2
a +c = 2b
(1)

b2 +d2 = 2c2
(2)

---1---+ ---1---= ---2---
a +b+ c  a+ c+ d  a+ b+ d
(3)

Преобразуем уравнение (3):

(a+ b+d)(a+c+ d)+ (a+ b+ c)(a+b +d)= 2(a+ b+ c)(a+c +d)

2a2+ b2 +d2+ 3ab +2ac+3ad+ 2bc +2bd+2cd= 2a2+2c2+ 2ab+ 4ac+2ad+ 2bc+ 2bd+2cd

b2+d2+ ab+ ad =2c2+ 2ac

Воспользовавшись равенством (2),  получим

ab +ad= 2ac

при этом a> 0,  значит b+ d= 2c.  Подставим в равенство (2)  и получим

        (b +d)2
b2 +d2 = 2--2-

2(b2 +d2)= b2 +2bd+d2

(b− d)2 = 0

То есть b= d.  Но 2c= b+d =2b,  откуда b=c =d.

Подставим полученные равенства в уравнение (1):

a2+b2 = 2b2

Значит, a= b= c=d.

Ошибка.
Попробуйте повторить позже

Задача 4#71022

Найдите количество троек натуральных чисел m, n,k  , являющихся решением уравнения

   ∘ ---√--
m+   n+  k= 2023

Источники: Изумруд-2023, 11.4 (см. izumrud.urfu.ru)

Показать ответ и решение

Чтобы левая часть была целым числом, числа k  и n +√k  должны быть точными квадратами, при этом n+ √k ≥2,  значит ∘ ---√--
  n+  k ≥2  и отсюда m ≤2021.  Так как 1≤ m ≤ 2021,  то ∘ ---√--
  n+  k  может принимать любое значение от 2  до 2022  — по этому значению число m  определяется однозначно.

Пусть    2
k= x  и    √ -  2
n +  k= y,  где        2
1≤ x≤ y − 1  и 2≤y ≤2022,  тогда число n  определяется однозначно, а именно     2
n= y − x.  Получается, необходимо посчитать число допустимых пар (x,y).  Всего их

(    )      (       )
 22− 1+ ...+  20222− 1 =12+ 22+ ...+20222− 2022

Формула суммы квадратов первых n  натуральных чисел известна:

 2  2       2  n(n+ 1)(2n +1)
1 +2 + ...+ n = ------6-----

Применим эту формулу и получим

                       2022⋅2023 ⋅4045
12+22+ ...+ 20222− 2022 = -----6------− 2022= 27575680773
Ответ: 27575680773

Ошибка.
Попробуйте повторить позже

Задача 5#71023

Петя и Вася играют в следующую игру. Петя в каждую клетку таблицы 8 × 8 записывает число от 1 до 64, используя каждое по одному разу. После этого Вася выбирает одну из клеток и ставит на эту клетку ладью. Затем он выбирает вторую клетку, на которую можно переместиться одним ходом ладьи из первой клетки, и перемещает ладью на эту клетку. Далее он выбирает третью клетку, на которую можно переместиться одним ходом ладьи из второй клетки, и перемещает ладью на эту клетку. Выбирать ранее посещённые клетки запрещено. После этого Вася складывает все три числа, записанных в клетках, на которых стояла ладья. Какую максимальную сумму гарантированно может получить Вася независимо от того, каким способом Петя заполнит таблицу? (Ладья может перемещаться на любое количество клеток по горизонтали или вертикали.)

Источники: Изумруд-2023, 11.5 (см. izumrud.urfu.ru)

Показать ответ и решение

Лемма. а) На доске 8× 8  выбраны 11 произвольных клеток. Тогда среди них можно найти три клетки такие, что от одной из них можно двумя ходами ладьи обойти вторую и третью клетки.

б) На доске, суммарное числом столбцов и строк в которой не более 11, выбраны 8 клеток. Тогда среди них можно найти три клетки такие, что от одной их них можно двумя ходами ладьи обойти вторую и третью клетки.

Доказательство леммы. Если в столбце/строке выбрана одна клетка, будем называть её одиночной, а если две — будем называть каждую из двух клеток парной. Будем говорить, что клетка занимает строку/столбец, если она стоит в этой строке/столбце. Заметим, что никакие другие клетки не могут быть выбраны в столбце/строке, где стоит одиночная или парная клетки. Тогда каждая пара клеток занимает суммарно 3 строки и столбца, а каждая одиночная — 1 строку и 1 столбец.

a) Обозначим число одиночных клеток за x,  а число парных клеток — за 2y.  Если лемма не выполняется, то нельзя 11 клетками занять более 8 строк и 8 столбцов, то есть 16 в сумме. Тогда имеем систему

{
   x+ 2y = 11
  2x +3y ≤ 16

Но 2x+ 3y = 1,5(x+ 2y)+ 0,5x= 16,5+0,5x> 16  — противоречие. Следовательно, предположение неверно и пункт а) леммы доказан.

б) Аналогично пункту а) леммы обозначим число одиночных клеток за x,  а число парных клеток за — 2y.  Если лемма не выполняется, то нельзя 8 клетками занять более 11 строк и столбцов в сумме. Тогда имеем систему

{
   x +2y = 8
  2x +3y ≤ 11

Но 2x+ 3y = 1,5(x+ 2y)+ 0,5x =12+ 0,5x >11  — противоречие. Следовательно, предположение неверно и пункт б) леммы доказан.

_________________________________________________________________________________________________________________________________________________________________________________

Рассмотрим 11 клеток с числами от 54 до 64. Из пункта а) леммы следует, что какие-то три из них второй игрок может обойти, придерживаясь условий задачи. Минимальная сумма трёх из этих чисел равна

54 +55+ 56= 165,  значит второй игрок всегда может получить сумму не менее 165 . Предположим, что сумму больше 165 не всегда удастся получить. Тогда никакие три из клеток с числами от 54 до 64 помимо 54, 55, 56 не должны оказаться в одной строке/столбце или образовывать "угол".

- - - - - - - -
- - a - - b - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - c  - -
- - - - - - - -
- - - - - - - -

При этом числа 54, 55, 56 обязаны оказаться в одной строке/столбце или образовывать "угол иначе найдётся другая тройка чисел с большей суммой. Если эти числа располагаются в одной строке/столбце, или образуют "угол то занимают суммарно 4 строки и столбца. Без ограничения общности, пусть эти числа стоят так, как показано ниже, ведь если поменять какие-то строки/столбцы местами, искомая сумма не изменится.

54 55 56 X X X X X
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -
X X X - - - - -

И в том, и в другом случае оставшиеся 8 клеток с числами от 57 до 64 располагаются в выделенном прямоугольнике, количество строк и столбцов в которых суммарно равно 12. Если эти 8 клеток занимают не все строки или столбцы, то они занимают суммарно не более 11 строк и столбцов. Тогда из пункта б) леммы следует, что какие-то три числа стоят в одной строке/столбце или образуют “угол”, а значит, выбрав эти три клетки, мы увеличим искомую сумму. Если эти 8 клеток, среди которых x  одиночных и 2y  парных клеток, занимают все строки и столбцы, то имеем систему

{  x +2y = 8
  2x +3y = 12

откуда x =0,y = 4.  Следовательно, все клетки в выделенном прямоугольнике парные. Тогда найдётся число не менее 52 (на второй таблице число 53 может дополнять серые клетки до квадрата), которое стоит в одной строке или в одном столбце с какой-то парной клеткой из выделенного прямоугольника. Взяв это число и две парные клетки, получим сумму не менее 52+  57+58= 167.  Значит, примера, гарантирующего сумму 165, но не гарантирующего сумму 166, не существует.

Пример, гарантирующий сумму 166, но не гарантирующий сумму 167:

64 1 2 3 4 5 6 7
63 8 9 10 11 12 13 14
15 62 16 17 18 19 20 21
22 61 23 24 25 26 27 28
29 30 60 59 46 45 44 43
31 32 42 41 58 47 50 53
33 34 40 39 48 57 51 55
35 36 37 38 49 52 56 54

Здесь сумма 166 достигается, например, на числах 54, 55, 57. Все остальные суммы в пределах правого нижнего прямоугольника 3×4  не превосходят 166. Максимальная сумма в пределах правого нижнего прямоугольника 4 ×6  не будет превосходить 166, так как 60+ 59+46 =165.  Оставшиеся числа можно ставить в любые из оставшихся клеток, так как максимальная ещё не рассмотренная сумма будет равна 64 +63+ 36= 163.

Ответ:

 166

Рулетка
Вы можете получить скидку в рулетке!