Тема НадЭн - задания по годам

НадЭн 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела надэн - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#87528

Госпожа Такаято решила сесть на диету и из каждых десяти дней делать четыре голодных и шесть обжорных. Сколькими разными способами она может распределить такие дни, чтобы у неё не было более двух голодных дней подряд (в рамках одной десятидневки)?

Источники: Надежда энергетики - 2024, 11.1 (см. www.energy-hope.ru)

Показать ответ и решение

Посчитаем сначала общее количество способов распределить дни без учёта условия. Заметим, что нам нужно выбрать 4 голодных дня, остальные сразу станут обжорными. Значит, их количество

 4   10⋅9⋅8⋅7
C10 =---4!---= 210

Теперь посчитаем способы, которые нам не подходят под условия, чтобы вычесть их. Понятно, чтобы не выполнялось условие задачи нужно иметь хотя бы 3 голодных дня подряд, но, т.к. голодных дней всего 4 возможно два варианта:

1) У нас 3 голодных дня подряд и 1 голодный, не стоящий с ними рядом. Будем воспринимать эти 3 дня как 1, назовём его большой голодный день, т.е. теперь у нас будет 8 дней и мы распределяем большой голодный день и голодный день так, чтобы они не стояли рядом. Если большой голодный стоит первым или последним, то у обычного есть 6 вариантов, в иных случаях у него их 5. В итоге

2⋅6+ 6⋅5= 42

2) У нас 4 голодных дня подряд. Количество таких способов равно количеству способов выбрать место для первого голодного дня, оно равно 7.

В итоге количество способов распределения, подходящих под условия равно

210 − 42− 7= 161
Ответ: 161

Ошибка.
Попробуйте повторить позже

Задача 2#87529

На каждой из двух прямолинейных линий электропередач установлены обслуживающие подстанции. На линии А — через каждые m  км, на линии В — через каждые q  км. Если занумеровать их подряд вдоль каждой линии, то расстояния между подстанциями A1  и B1  равно   √-
15 2  км, между A3  и B3  равно  √--
5 34  км, между A4  и B4  равно   √--
15 10  км. Определите, параллельны ли данные линии? Если да, то найдите расстояние между ними. Если нет, то найдите расстояние от подстанции A1  до точки их пересечения.

Источники: Надежда энергетики - 2024, 11.2 (см. www.energy-hope.ru)

Показать ответ и решение

Если ввести декартову систему координат с началом в точке A
  1  и одной из осей, направленной вдоль линии A  (можно и иначе), то координаты всех подстанций будут изменяться линейным образом, следовательно, квадраты расстояний AkBk  будут являться значениями некоторого многочлена второй степени        2
P(s)= as + bs+ c  . Найдём его. Будем измерять s  в условных единицах длины, так что каждая следующая единица соответствует следующей паре подстанций. Тогда

            2
P (0)= c= A1B1 = 9⋅50

                   2
P (2)= 4a+ 2b+ c= A3B3 = 17⋅50

                   2
P (3)= 9a+ 3b+ c= A4B4 = 45⋅50

Для простоты расчетов уменьшим все правые части в 50  раз и из полученной линейной системы найдём

a= 8,b =− 12,c= 9.

Следовательно, искомый многочлен имеет вид

P(s)= 50(8s2− 12s+ 9)

Его дискриминант отрицателен, P(s)  нигде не обращается в ноль (и всюду положителен). Следовательно, линии не пересекаются. Квадрат расстояния между ними равен минимальному значению P (s)  , которое достигается при s =s0 = 34  и равно 50⋅ 92 = 225  . А само расстояние равно 15.

Ответ:

Линии параллельны, расстояние между ними равно 15  км.

Ошибка.
Попробуйте повторить позже

Задача 3#87530

Запись числа A  заканчивается цифрой 3. Если же последнюю цифру переставить в начало, то получится число, на 27 больше A  . Найдите A  , если известно, что оно делится на 99, или докажите, что такого числа не существует.

Источники: Надежда энергетики - 2024, 11.3 (см. www.energy-hope.ru)

Показать ответ и решение

Пусть A  имеет в своей записи k+ 1  цифру, тогда

A= x⋅10+ 3

где x  — это какое-то k  -значное число. Значит, после перестановки 3 в начало мы получим число

B = 3⋅10k+ x

По условию B =A + 27,  получаем равенство

10x+ 3+ 27 =3 ⋅10k+ x

9x= 3⋅10k− 30 =30⋅(10k−1− 1)= 30 ⋅ 9◟9.◝..◜9 ◞
                              k−1цифр

x =30⋅ 1◟1.◝◜..1◞ = 3◟3..◝.◜30◞
      k−1цифр  k цифр

Следовательно, можем понять как выглядит A

A=  3◟3..◝◜.3◞ 03
   k−1цифр

По условию A  должно делиться на 99, а следовательно оно делиться на 11. Значит, по признаку делимости на 11, знакопеременная сумма цифр числа A  должна делиться на 11. Но видно из его записи, когда k − 1  чётно, то знакопеременная сумма равна 3, когда k− 1  нечётно, то знакопеременная сумма равна 6. Следовательно, на 11 A  делиться не может.

В итоге делаем вывод, что чисел, подходящих под условия задачи, не существует.

Ответ: нет

Ошибка.
Попробуйте повторить позже

Задача 4#87531

В круговой сектор радиуса R  с центральным углом α  (0< α≤ π∕2)  вписаны две окружности (обе касаются радиусов-сторон сектора, друг друга внешним образом, а большая касается окружности сектора). Какую наибольшую долю может составлять расстояние между центрами вписанных окружностей от величины R  и при каком значении α  это достигается?

Источники: Надежда энергетики - 2024, 11.4 (см. www.energy-hope.ru)

Показать ответ и решение

Обозначим радиусы малой и большой вписанных окружностей через x  и y  , введём величину β = α
   2  . Отметим, что        π
0 <β < 4  .

PIC

Выразим стороны треугольника через радиусы трёх окружностей.

OO2 = R − y, OO1 = R− x− 2y

Из подобия прямоугольных треугольников получаем

--1-= R-− y-= R−-x−-2y
sin β    y       x

Откуда

R-= R-− 2x
y     x

-x        y- y-
R = (1− 2⋅R)⋅R

Расстояние между центрами вписанных окружностей O1O2  равно x+y  .

Рассмотрим искомое отношение

x +y       y y   y       y  y
--R- = (1− 2R)R-+ R-= 2(1− R)R-

Относительно величины t= yR-  это отношение есть парабола 2t(t− 1)  . Выразим параметр t  через угол β  .

si1nβ = Ry − 1

t= y= --sinβ--= ---1---
   R  1 +sinβ   1+ s1inβ

Таким образом, при изменении β  от 0  до π
4  параметр t  растёт от 0  до √ -
  2− 1  . Остаётся найти максимум параболы 2t(1− t)  на полученном отрезке   √-
[0; 2− 1]  . Вершина параболы лежит правее отрезка, следовательно искомый максимум достигается при        √-
t= t0 = 2− 1  и равен   √ -
2(3 2− 4)  .

Ответ:

 2(3√2-− 4)  при α= π
   2

Ошибка.
Попробуйте повторить позже

Задача 5#87532

Коэффициенты многочлена степени n> 2024

         n      n−1
Pn(x)= anx + an−1x   + ...+ a1x +a0,

взятые в том же порядке (начиная со старшей степени), образуют геометрическую прогрессию со знаменателем q  (q ⁄= 0,±1 ).  Выясните, может ли Pn(x)  иметь только один корень.

Если может, укажите минимальную степень (из диапазона выше), при которой это возможно, и выразите корень через a
 0  и q  . Если нет, укажите минимально возможное количество корней при любом n> 2024.

Источники: Надежда энергетики - 2024, 11.5 (см. www.energy-hope.ru)

Показать ответ и решение

Заметим, что a ⁄= 0
 n  и a ⁄=0,
0  следовательно a = a qn ⁄= 0.
 0   n  Значит, x= 0  не является корнем.

Поймём, что одночлены (начиная со старшего) в многочлене образуют геометрическую прогрессию с знаменателем q
x.  Значит, многочлен может быть представлен как сумма первых n+ 1  члена данной прогрессии. Заметим, что если x= q,  то

        n       n−1                    n     n        n
Pn(q)= anq +an−1q   + ...+a1q+ a0 = an = a◟nq-+anq◝+◜-...+-anq◞
                                           n+1раз

         n             n
Pn(q)= anq (n +1)⁄= 0, т.к. a ⁄= 0,q ⁄=0

Значит, x= q  не корень. Поэтому дальше будем считать x ⁄=q  и запишем следующее

                                  anxn((q)n+1− 1)
Pn(x)= anxn +an−1xn−1+ ...+ a1x+ a0 =------xq--------
                                       x − 1

Выразим корни с учётом x⁄= 0  и an ⁄= 0

anxn((q)n+1 − 1)
-----qx--------=0
     x − 1

 ( )
( q n+1− 1= 0
  x

xn+1 = qn+1

Если n+ 1  нечётно, тогда x =q,  чего быть не может, а если n+ 1  чётно, тогда x= ±q,  а в силу ограничений получаем x= −q.  Это и будет единственным корнем.

Теперь найдём минимальное n.  Из условий n > 2024  и n+ 1  чётно получаем, что n= 2025  подходит.

Ответ:

может при n   = 2025
 min  , корень равен − q

Рулетка
Вы можете получить скидку в рулетке!