Звезда 2022
Ошибка.
Попробуйте повторить позже
Известно, что
Докажите, что
Источники:
Подсказка 1
Давайте внимательно посмотрим на неравенство, которое нужно доказать. Где такое выражение чаще всего встречается? Попробуйте подумать в этом направлении.
Подсказка 2
Верно, это дискриминант квадратного трёхчлена с нужными коэффициентами. Тогда давайте рассмотрим трёхчлен ax^2 + bx +c. Как теперь можно переформулировать нашу задачу?
Подсказка 3
Ага, когда наше неравенство будет выполняться, многочлен будет иметь два корня. Тогда нужно просто проанализировать знаки трёхчлена в хороших точках. Какие это могут быть точки, учитывая неравенства, данные по условию?
Подсказка 4
Верно, попробуйте подставить точки 3 и -3 и посмотреть на знаки трёхчлена. Но не забудьте ещё проверить a=0, потому что в этом случае у вас не квадратный трёхчлен. В таком решении это важно.
Первое решение.
Чтобы доказать хочется доказать
Преобразуем это неравенство:
Верно, поэтому было верным и
Значит,
Второе решение.
Нам нужно доказать, что а это очень напоминает дискриминант, поэтому давайте придумаем квадратный трёхчлен с таким
дискриминантом и докажем, что он имеет 2 корня. Очевидно, подходит
Всегда ли мы можем рассматривать его
дискриминант? Нет, в случае
никакого дискриминанта нет, поэтому его надо рассмотреть отдельно — благо, тут всё просто и понятно,
а
значит,
Теперь рассмотрим случай, когда В неравенстве из условия было
поэтому давайте попробуем подставить 3 и
-3.
То есть квадратный трёхчлен принимает положительные и отрицательные значения, а значит, он имеет 2 корня! И его
Ошибка.
Попробуйте повторить позже
Решите систему уравнений
Источники:
Подсказка 1
Наши выражения как-то подозрительно напоминают основное тригонометрическое тождество. Только вот у нас sin не складывается с cos, да и степени не те... Давайте хотя бы сделаем первое условие, для этого сложим два уравнения...
Подсказка 2
Имеем, что sin³x+sin⁴x+cos³y+cos⁵y = 2. С другой стороны, 2 = sin²x+cos²x+sin²y+cos²y. Как из этого получить интересное неравенство...
Подсказка 3
Т.к. sinⁿx ≤ sin²x и cosⁿx ≤ cos²x, при n ≥ 3, то 2 = sin³x+sin⁴x+cos³y+cos⁵y ≤ sin²x+sin²x+cos²y+cos²y = 2. Значит все неравенства обращаются в равенства. Решите получившуюся систему и радуйтесь жизни!
Сложим два уравнения системы, тем самым получим новое уравнение, являющееся следствием системы.
Воспользуемся ОТТ:
Квадраты неотрицательные, а все скобочки тогда, чтобы сумма была = 0, каждое слагаемое должно быть равно 0. Имеем
систему:
Решим для
Из первого уравнения возможны 2 случая:
1) Тогда из второго
2) Тогда
Решим для
1) тогда
2) тогда
И так как мы изначально получили следствие из исходной системы, надо не забыть проверить, какие серии корней подходят, а какие нет,
подставив в изначальную систему все комбинации возможных значений
Подходят следующие варианты:
1)
2)
Ошибка.
Попробуйте повторить позже
Плоскость, параллельная основанию пирамиды
, отсекает пирамиду
(вершины
расположены на
рёбрах
соответственно). Объём пирамиды
равен 375 , объём пирамиды
равен 81. Найдите объём
пирамиды
.
Источники:
Подсказка 1
Т.к. плоскости (A₁B₁C₁) и (ABC) параллельны, то MA₁/MA=MB₁/MB=MC₁/MC=k. Тогда объемы тетраэдров MA₁B₁C₁ и MABC относятся как коэффициент подобия k в кубе. Чему же равен k?
Подсказка 2
Верно, 3/5! Мы видим, что объем тетраэдра MAB₁C₁ состоит из объемов тетраэдров MA₁B₁C₁ и AA₁B₁C₁, у которых есть общее основание. Как же тогда относятся их объемы...
Подсказка 3
Они относятся как высоты, которые, в свою очередь, относятся как MA₁/A₁A=3/2. Посчитайте объем AA₁B₁C₁ и завершите решение!
Так как плоскость параллельна плоскости основания
то
Пирамиды и
подобны, тогда их объёмы относятся как коэффициент подобия
в кубе:
Пусть тогда
Заметим, что объём пирамиды
складывается из двух кусочков:
объём
которой мы знаем, и
Причём эти 2 пирамиды имеют общее основание
тогда их объёмы относятся так же, как
относятся их высоты к
А высоты относятся так же, как относятся
и
то есть высота пирамиды
больше
высоты пирамиды
в
Значит,
Ошибка.
Попробуйте повторить позже
Датчик случайных чисел за одно действие уменьшает или увеличивает на 1 коэффициент перед или свободный член
в квадратном трёхчлене. После некоторого числа таких операций он преобразовал трёхчлен
в трехчлен
. Верно ли, что среди полученных в процессе квадратных трёхчленов есть такой, у которого целые корни? Ответ
обоснуйте.
Источники:
Подсказка 1
Следить сразу за двумя целыми корнями как-то сложновато. Давайте для начала попробуем доказать, что в какой-то момент будет один целый корень. Может возьмем какой-нибудь конкретный?
Подсказка 2
А чего мелочится, давайте посмотрим на 1! Если у нашего трехчлена есть корень 1, то сумма его коэффициентов равна 0. Как меняется сумма наших коэффициентов после одной операции?
Подсказка 3
Верно, она меняется на 1! Изначально сумма была 3, а в конце -199. Значит в какой-то момент она станет равной 0. Итак, в какой-то момент у нашего трехчлена будет корень 1. Докажите, что тогда у него есть второй целый корень (возможно кратный)!
Давайте попробуем доказать, что в какой-то момент у квадратного трёхчлена будут целые корни. Для этого угадаем один из них. Если
сумма коэффициентов многочлена равна 0, то есть корень У начального многочлена
сумма коэффициентов
равна 3, а у конечного
сумма коэффициентов равна -199, при этом за одно действие ровно один из коэффициентов
меняется на 1, значит, сумма коэффициентов меняется на 1. Но если она была положительной, а потом стала отрицательной, то в
какой-то момент обязательно была равна 0. То есть в какой-то момент у нас был трёхчлен
, один из
корней которого равен 1! А по теореме Виета второй корень равен
— тоже целому числу
у трёхчлена 2 целых
корня!