ЮМШ - задания по годам → .04 ЮМШ 2022
Ошибка.
Попробуйте повторить позже
Вася посмотрел на граф на
вершинах и поставил на каждую вершину
переменную
После чего рассмотрел
выражение
Пусть и
— минимум и максимум
(a) Пусть степень каждой вершины в графе равна Найдите
(b) Докажите, что вершины графа можно покрасить в
цвет, так что любые две соседние вершины получат разные
цвета.
(c) Пусть — максимум выражения
при неотрицательных
с суммой
Докажите, что
где — максимальный размер множества вершин графа
попарно соединенных ребрами.
Источники:
(a)
Оценка. Занесём 2 в числитель и оценим каждое слагаемое следующим образом
Получим
Так как у каждой вершины степень у каждой вершины в графе равны то каждая
в числителе встретиться ровно
раз,
следовательно
Пример. Поставим во все вершины получим
(b) Предположим, что это не так, то есть граф так покрасить нельзя. Тогда по теореме Брукса найдётся подграф, в
котором степени вершин хотя бы Поставим в вершины этого подграфа
а во все остальные вершины графа
Тогда значение выражения
станет равным
а это противоречит тому, что
— максимум выражения
(c) Кликой графа называется подмножество его вершин, любые две из которых соединены ребром. Аналогично определяется антиклика
Пример. Найдём в графе максимальную клику, в его вершины поставим а в остальные
Оценка.
Рассмотрим расстановку, на которой достигается Если там есть вершина с 0, удалим её. По предположение
если максимальная антиклика не уменьшилась, и
если максимальная антиклика уменьшилась. Таким образом сделаем все числа ненулевыми.
Обозначим — сумму чисел в смежных с
вершинах. Заметим, что если
и
— несмежные вершины и
то можно
заметить
на
Общая сумма не измениться, а
увеличиться, противоречие. Следовательно, если
и
— несмежные
вершины, то
Рассмотрим антиграф, проверим два случая:
1) Если он связен. Значит, для любых вершин и
обозначим это число за
Следовательно по предположению
Рассмотрим вершину максимальной антиклики.
Следовательно, число в плюс в вершинах, не смешных с
меньше
Просуммируем по врем вершинам максимальной антиклики.
Мы посчитали каждое число неменее 1 раза, значит сумма всех меньше, чем
. Противоречие, следовательно, такое
невозможно.
2) Антиграф не связен.
Ошибка.
Попробуйте повторить позже
— некий полином с целыми коэффициентами,
и
— целые числа. Построим последовательность
, где
, и
и пусть
— остаток от деления
на
.
1. Пусть . Докажите, что период последовательности
(то есть, такое наименьшее
, что
при достаточно больших
) равен 2.
2. Найдите длину предпериода той же последовательности (то есть такое наибольшее , что
, где
—
период).
3. Назовем полином стабильным по модулю , если существует
, такое что для любого
найдется
, для которого
. Докажите, что полином
нестабилен по модулю
, если
является квадратом нечётного
числа.
4. Докажите, что многочлен стабилен для бесконечного числа натуральных
.
1. Легко видеть, что остатки от деления на 3 чередуются с периодом 2 (1, 0, 1, 0, . . .) поэтому период остатков по модулю
тем более не равен 1.
Покажем что он равен 2.
Заметим, что
Отсюда следует, что если делится на
, то тем же свойством обладает и
, а если вдобавок
,
дают
остаток от 1 деления на 3, то
делится на
.
Учитывая, что такая ситуация имеет место при каждом четном , получаем, что соответствующее
может неограниченно увеличиваться,
в частности,
делится на
при некотором
(а значит и при всех
). Поэтому период
равен
двум.
2. Выпишем остатки от деления на 9 и на 27: легко убедиться, что это 2-периодические последовательности
и
соответственно.
Поэтому число не делится на 3 при нечетных
, делится на 3, но не на 9 при
и делится на 9, но не на 27 при
четных
.
То есть если — степень вхождения 3 в число
, то
,
а дальше
и
.
Отсюда легко видеть, что наибольшее такое, что
равно 2022, то есть
— последняя среди разностей вида
не кратная
.
3. Пусть , тогда
- нечетное число.
Заметим, что ,значит, достаточно показать, что существует число, проделывая операцию из условия над которым мы
не получим 2.
Рассмотрим числа вида , где НОД
Нетрудно заметить, что
То есть числа вида , где НОД
переходят в себя, но число 2 не имеет такого вида, поэтому полином
нестабилен по модулю
, если
является квадратом нечётного числа.
4. Индукцией по докажем, что для
многочлен
стабилен.
Обозначим через , то что
База
Таким образом, имеем цикл длины 3 везде одинаковый.
Переход
Пусть по модулю многочлен стабилизируется так, что всегда встретится
Тогда по модулю остаток
будет
, что не зависит от
, при
, что бывает по базе индукции, поэтому многочлен стабилизируется и по модулю
.