Тема ЮМШ (олимпиада Юношеской Математической Школы)

ЮМШ - задания по годам .06 ЮМШ 2024

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела юмш (олимпиада юношеской математической школы)
Разделы подтемы ЮМШ - задания по годам
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#83387

Цель этого сюжета — доказательство следующего утверждения:

Пусть p  — нечётное простое чисто. Докажите, что существует ровно (p− 3)∕2  упорядоченных четвёрок (a,b,c,d)  натуральных чисел, для которых ab+ cd =p  и max(c,d)<min(a,b)  .

Если r  — остаток по модулю p  , то назовём четвёрку (a,b,c,d  ), удовлетворяющую условиям выше, r  -четверкой, если c ≡ra  (mod p  ).

1. Докажите, что если r  -четвёрка существует, то r∈{2,3,...,p− 2} .

2. Докажите, что для данного r  существует не более одной r  -четвёрки.

3. Докажите, что если r  -четверка существует, то (p − r)  -четвёрки не существует.

4. Докажите, что для всякого r∈{2,3,...,p− 2} существует либо r  -четвёрка, либо (p − r)  -четвёрка.

Источники: ЮМШ - 2024, сюжет 1 (см. yumsh.ru)

Показать доказательство

1. Пусть существует r  -четверка (a,b,c,d)  при r= 1  . Тогда p=ab+ cd≡ ≡ ab+ rad= a(b+d)  (mod p  ). Получаем, что       .
a(b+ d)..p  . Тогда либо a  , либо b+ d  делится на p  . Тогда либо a ≥p  , b+ d≥ p  . В первом случаем получаем, что ab+ cd≥ p+cd> 1  . Во втором же ab+cd≥ 2b+d ≥p +1  . Получаем, что 1  -четверки не существует.

Пусть существует r  -четверка (a,b,c,d)  при r= p− 1  . Тогда p= ab+cd≡ ≡ab+ rad =a(b− d)  (mod p  ). Получаем, что       .
a(b− d)..p  . Тогда либо a  , либо b− d  делится на p  . Тогда либо a≥ p  , b+ d≥ p  (b− d ⁄=0  , поскольку b> d  ). В первом случаем получаем, что ab+ cd≥p +cd> 1  . Во втором же ab+cd≥ b+ d> b− d ≥p  . Получаем, что (p− 1)  -четверки тоже не существует.

2. Пусть (a,b,c,d)  , (a′,b′,c′,d′)  — две четверки, удовлетворяющие условиям с одним и тем же r  . Тогда ac′ ≡ara′ ≡ ca′ (mod p  ), аналогично bd′ ≡− rdd′ ≡ b′d  (mod p  ). Т.е. ac′− a′c  , bd′− b′d  кратны p  .

Предположим, что эти разности одновременно не равны нулю. Пусть не умаляя общности ac′− a′c> 0  , тогда ac′ >p >ab  , т.е. c′ > b  и тем более c′ > d  . Отсюда получаем, что |bd′− b′d|< max(bd′,b′d) <max(c′d′,b′c′)= b′c′ < a′b′ < p  откуда (т.к. |b′d− b′d| кратно  p  ) получаем bd′− b′d= 0  — противоречие.

Пусть теперь одна из исходных разностей равна нулю (не умаляя общности bd′− b′d  ). Отметим, что из равенств ab+ cd =p =a′b′+ c′d′ следует взаимная простота b  и d  , b′ и d′ . Поэтому из равенства bd′ = b′d  следует, что b= b′ и d =d′ , а из него — (a− a′)b= (c′− c)d  . В силу взаимной простоты b  и d  имеем a− a′ =dx  , c′− c =bx  . При x> 0  это противоречит условию c′ < b′ = b  , при x< 0  — условию c< b  . Значит x =0  , a =a′ , c= c′ — четверки полностью совпадают.

3. Пусть (a,b,c,d)  , (a′,b′,c′,d′)  — две четверки, удовлетворяющие условиям с r  и c r′ = p− r  соответственно. Тогда ac′ ≡− ara′ ≡ −ca′ (mod p  ), аналогично bd′ ≡ −rdd′ ≡−b′d  (mod p  ). Т.е. ac′+a′c  , bd′+b′d  кратны p  .

Пусть c′ ≥ b  , а значит c′ > c,d  , тогда, аналогично прошлому пункту, bd′+b′d< c′d′+b′c′ < c′d′+b′a′ = p  — противоречие с делимостью на p  . Значит c′ < b  и, аналогично c< b′ , d′ < a  , d< a′ . Тогда a′c+ac′ <ab+ a′b′ < 2p  , поэтому из делимости ac′+a′c= p  и аналогично b′d+bd′ = p  .

Предположим теперь, не умаляя общности, что a  — наибольшее из чисел. Вычитая из ab+cd  равное ему ac′+ ca′ , получаем a(b− c′)=c(a′− d)  , откуда из взаимной простоты a  и c  получаем, что a′− d  делится на a  — противоречие с тем, что a< a′ , a′− d> 0  .

4. Рассмотрим на плоскости множество всех векторов (x,y)  с целыми координатами x,y  такими, что y ≡ rx  (mod p  ) или y ≡(p− r)x  . Отметим, что это множество вместе с каждым вектором (x,y)  содержит также и (±x,±y)  . Рассмотрим в нашем множестве вектор с минимальной суммой координат. В силу замечания выше можно считать, что вектор u:= (a,c)  , где a,c>0  , a ⁄=c  (на осях координат и на биссектрисах углов между ними такой вектор лежать не может, поскольку 2≤ r≤p − 1  ), если c ≡(p− r)a  (mod p  ), то переобозначим r  и p− r  . Предположим пока, что a> c  . Рассмотрим прямую ℓ  с уравнением xc− ya= p  . Будем искать точку (d,−b)  на этой прямой такую, что d> 0,d <a,d< b,c <b  — тогда четверка (a,b,c,d)  и будет искомой. Заметим, что если (x,y)∈ℓ  , то (x− a,y − c)∈ℓ  .

Прямая ℓ  где-то пересекает прямую y+ x= 0  . Пусть точка (x0,y0)∈ ℓ  с целыми x0,y0  лежит выше прямой y+ x= 0  , а точка v0 :=(x0− a,y0− c)  — (нестрого) ниже.

Во-первых, проверим, что x0− a >0  . В самом деле, в противном случае x0 ≤ a  . Из выбора вектора u  имеем a+ c≤ |x0− a|+|y0− c|= a− x0 +|y0 +c| . Если c≥y0  , то a− x0+ |y0− c|= a+ c− x0− y0 < a+ c  — противоречие. Если же y0 >c  , то p =x0c− y0a <ac− ac= 0  — снова противоречие.

Итак, x0− a> 0  . Поскольку (x0− a)+ (y0− c)≤ 0  , имеем y0 − c< 0  . Если y0 ≥ 0  , то 0< x0− a ≤c− y0 ≤ c  и обе координаты вектора v0  по модулю не больше, чем c  — это опять противоречит выбору u  . Значит, y0 < 0  и c− y0 > c  . Теперь выберем наибольшее целое неотрицательное m  , при котором x0− a− ma≥ 0  . Ясно, что это неотрицательное значение строго меньше, чем a  . Тогда вектор v0− mu =(x0− a− ma, y0− c− mc)  и есть искомый вектор. Действительно, все нужные неравенства уже установлены, осталось только исключить случай x0 − a− ma =0  , но в таком случае из уравнения прямой ℓ  получаем xc− ya= p  , − (y0− c− mc)a =p  , что невозможно в силу того, что a> c> 0  , − y0+c +mc ≥1 +c+ mc≥ 2  .

Наконец обратимся к случаю c> a  . В этом случае обозначим a′ =c  , c′ = a  и построим точно так же четверку (a′,b′,c′,d′)  со всеми нужными свойствами, но такую, что, наоборот a′ ≡rc′ (mod p  ). В этом случае, очевидно, (b′,a′,d′,c′)  будет p − r  -четверкой, что нам подходит.

Ошибка.
Попробуйте повторить позже

Задача 2#83388

Дан граф G =(V,E)  на n  вершинах: сопоставим каждой вершине v  переменную x
 v  . Пусть T  — множество остовных деревьев графа G  (то есть поддеревьев, содержащих все вершины). Рассмотрим остовный многочлен от n  переменных x1,...,xn

                ∑  ∏  deg v−1
PG(x1,x2,...,xn)=       xv  S  .
               S∈Tv∈V

Назовем связный граф хорошим, если PG (x1,...,xn)  раскладывается на линейные множители (в частности, если PG  — тождественный ноль), иначе плохим.

1. Найдите PK4(1,2,3,4)  , где K4  — полный граф на 4 вершинах.

2. Докажите, что цикл на пяти вершинах является плохим графом.

3. Пусть G  — хороший граф, U  — некоторое подмножество его вершин. Граф H  состоит из всех вершин, лежащих в U  , и всех ребер графа G  , соединяющих эти вершины. Докажите, что граф H  тоже хороший.

4. Назовём раздвоением вершины v  операцию, добавляющую в граф вершину v′ , соединенную ровно с теми же вершинами, что и   v  . Докажите, что граф, получающийся из одной вершины операциями добавления висячей вершины, раздвоения вершины с добавлением ребра   ′
vv и раздвоения вершины без добавления ребра   ′
vv , является хорошим.

Источники: ЮМШ - 2024, сюжет 2 (см. yumsh.ru)

Показать ответ и решение

1. В полном графе на четырех вершинах есть только 2 вида остовных деревьев: 1) цепь длины 4; 2) три вершины, "висящие"на четвертой.

Каждое дерево первого вида даст в остовный многочлен одночлен xixj  , i⁄= j  , причем каждый одночлен будет представлен 2 раза.

Каждое дерево второго вида даст в остовный многочлен одночлен x2i  , где i  — "вершина"остова.

В итоге получим многочлен:

pict

2. Распишем PC = x1x2x3+ x2x3x4+ x3x4x5+ x4x5x1+ x5x1x2
  5  . Поскольку многочлен PC
  5  линеен по каждой переменной, получаем, что каждая из переменных живет только в одной из скобок. Тогда переменные вынуждены разбиться на скобки 2-2-1 или 3-1-1, что дает нам не более четырех мономчиков, противоречие.

3. Давайте сначала заметим, что можно последовательно выкидывать вершины по одной с сохранением связности, если U  связно. (Если несвязно, то просто 0 получится и все).

Для этого нужно подвесить за U  и поочередно удалять вершины с самого нижнего уровня. Теперь нужно понять, что при удалении только одной вершины v  граф остается хорошим. Для этого подставим 0 в xv  . Получим, что все слагаемые, в которые xv  входило в хотя бы первой степени, обнулились, а значит остались в точности те, где v  — висячая вершина. А все такие деревья устроены так: выбрано дерево в графе G∖v  , и потом одна из вершин из окрестности v  соединена с v  . Тогда многочлен после подстановки нуля равен               ∑
PG∖v(x1,...,xn)⋅( u∈N(v)xu)  . Подстановка нуля сохраняет раскладываемость на множители, значит PG∖v  тоже раскладываемый, значит, при удалении вершины v  граф останется хорошим.

4. Сначала докажем вспомогательный факт про такой тип графов.

Лемма о раздвоении без добавления ребра. Пусть дан граф G  на n  вершинах. Рассмотрим граф G1  , полученный из G  добавлением вершины vn+1  и соединением ее со всеми вершинами из NG(vn)  , но не самой vn  . Тогда

                                   (  ∑      )
PG1(x1,x2,...,xn+1)= PG(x1,...,xn+ xn+1)(       xv).
                                    v∈NG(vn)

Доказательство. Давайте заметим, что любое дерево в графе G  устройство следующим образом — на всех вершинах, кроме v
 n  , берется некоторый лес, такой, что в каждой компоненте есть хотя бы одна вершина из N (v )
 G  n  , и потом вершина v
 n  соединяется с ровно одной вершиной из каждой компоненты. Обозначим за L  множество всех таких лесов, за t(K)  — число компонент связности в лесу K  , и назовем A1,A2,...At  пересечения множеств NG (v)  с компонентами связности леса K  . Тогда из рассуждений выше

                ∑  (  ∏            t(∏K)( ∑   )       )
PG(x1,x2,...,xn) =    (       xdvegK(v)−1    (    xv) xtn(K)−1).
               K ∈L  v∈V|v⁄=vn         i=1  v∈Ai

Теперь давайте поймём, как устроены деревья в G1  . Там мы тоже берём лес, который содержит все вершины, кроме vn  , vn+1  , и такой, что каждая его компонента содержит хотя бы одну вершину из NG(vn)  , после чего одна из долей соединяется с обеими вершинами из vn  и vn+1  , а каждая из остальных t(K)− 1  долей — с ровно одной из этих вершин. Тогда в тех же обозначениях получается, что

pict

Теперь очевидно, что второй сомножитель равен PG(x1,x2,...,xn+ xn+1)  , и лемма доказана. ________________________

Пусть G
  1  - граф из леммы 1. Мы в лемме 1 уже выяснили как устроены деревья в графе G  , поэтому нужно разобраться с тем, как они устроены в G
 2  . Заметим, что они устроены так: мы снова берем лес с такими же условиями, а дальше делаем одно из двух - либо не проводим ребро между vn  и vn+1  , и это слагаемое такое же как в G1  , либо проводим, и тогда каждую из долей соединяем с ровно одной из этих вершин. Стало быть, сумма всех первых слагаемых даст нам PG1  , а сумма вторых равна

pict

Тогда получается, что

pict

доказали требуемое.

Ответ:

1. (x1+ x2 +x3+ x4)2

Ошибка.
Попробуйте повторить позже

Задача 3#83389

Будем называть треугольник DEF  вписанным в треугольник ABC  , если точки D  , E  , F  находятся на сторонах BC  , AC  , AB  соответственно.

1. Докажите, что если отрезок EF  параллелен отрезку BC  , то описанные окружности треугольников AEF  и ABD  пересекаются на прямой DE  .

2. Оказалось, что CE = DE  , BF =DF  . Докажите, что точка, симметричная D  относительно EF  , лежит на пересечении описанных окружностей треугольников ABC  и AEF  .

3. Пусть ∠BAC  =∠DEF  = ∠DFE  . Средняя линия треугольника DEF  , параллельная EF  , пересекает AB  и AC  в точках X  и     Y  соответственно. Докажите, что точка A  , D  , X  , Y  лежат на одной окружности.

4. В треугольник DEF  вписан треугольник XY Z  , гомотетичный треугольнику ABC  . Докажите, что описанная окружность треугольника DEF  касается описанной окружности ABC  тогда и только тогда, когда касается описанной окружности XY Z  .

Показать ответ и решение

1. Пусть G  — вторая точка пересечения описанных окружностей AEF  и ABD  . Поскольку четырехугольник AFEG  описанный, то ∠AF E =  = 180∘− ∠AGE  . Четырехугольник ABDE  также описанный, значит ∠ABD = 180∘− ∠AGD  .

PIC

Поскольку EF ∥BC  , то ∠AF E = ∠ABD  .

Получаем, что ∠AGE = ∠AGD  . Тогда G  , E  , D  лежат на одной прямой.

2. Поскольку треугольники BED  и DFC  равнобедренные, то ∠EBD  =∠EDB  и ∠FCD = ∠FDC  . Тогда

∠EDF = 180∘− ∠BDE − ∠FDC  =180∘− ∠B − ∠C =∠BAC

Также из определения D′ (точка, симметричная D  относительно EF  ) следует, что

   ′
∠ED F =∠EDF  =∠BAC

Получается, что D ′ лежит на описанной окружности AEF  .

PIC

Из определения  ′
D как симметричной точки:

ED = ED′ = EB и D′F = FD = FC

Значит, B,D  и D′ лежат на одной окружности с центром в E,  а C,D  и D ′ с центром в F.  Тогда выполнены следующие равенства для вписанных и центральных углов:

     ′  1     ′  1     ′      ′
∠EBD  = 2∠AED  = 2∠AFD  =∠ACD

Получаем, что  ′
D лежит и на описанной окружности ABC  .

3. Обозначим за S  и T  середины DF  и DE  соответственно. Т.к. ∠SFE = ∠FAE = ∠FET  , то SF  и TE  — касательные к окружности, описанной около AF E  .

PIC

Рассмотрим пару окружностей: описанная окружность треугольника AFE  и окружность нулевого радиуса с центром в точке D  . Рассмотрим степени точек S  и T  относительно данных окружностей:

pow(AFE )(S)= SF2 = SD2 =powD(S)

              2     2
pow(AFE)(T)= TE = TD  = powD (T)

Получаем, что ST  — радикальная ось наших 2 окружностей. Тогда на этой же радикальной оси лежат X  и Y  . Тогда             2
XA ⋅XF = XD  и            2
YA⋅Y E = YD .  Следовательно, XD  — касательная к описанной окружности AFD  , и YD  — касательная к описанной окружности AFD  . Тогда

∠XAD = ∠XDF, ∠YAD = ∠YDE

∠XDF + ∠YDE  =∠BAC

                               ∘                  ∘
∠XDY + ∠XAY  =∠XAY  +∠XAY  +180 − ∠DFE − ∠DEF = 180

В итоге XAY D  — вписанный.

4. Окружность (DEF )  повторно пересекает стороны BC  , AC  , AB  в точках  ′
D ,  ′
E ,   ′
F соответственно. Окружность (XY Z)  повторно пересекает стороны EF  , DF  , DE  в точках   ′
X ,  ′
Y ,  ′
Z соответственно.

Окружности     ′ ′
(EX Z )  и    ′ ′
(F X Y)  повторно пересекаются в точке M  . Заметим, что

∠Y′MZ ′ = ∠DEF + ∠DFE = π− ∠EDF,

поэтому M  лежит на окружности     ′′
(DY Z )  . Также

∠EMF  = ∠FMX ′+ ∠EMX  ′= ∠F Y′X ′+∠EZ ′X ′ =∠F XY + ∠EXZ = π− ∠A,

поэтому M  лежит на окружности (AEF )  . Аналогично M  лежит на окружностях (BFD)  , (CED )  .

Пусть Φ  — инверсия с центром в точке M  и произвольным радиусом. Тогда

pict

Также

∠ Φ(X ′)Φ(E)Φ(F )=∠F MX ′ = ∠FY′X′ = ∠FXY = ∠AF E = ∠AE ′F ′.

Аналогично ∠Φ(X′)Φ (F)Φ(E)= ∠AF′E′ . Следовательно, треугольники AE ′F ′ и Φ(X ′)Φ(E )Φ (F)  подобны. Проделывая аналогичные рассуждения для двух других сторон мы получаем

△ABC ∪ △D ′E ′F′ ∼ △Φ (X ′)Φ(Y′)Φ(Z′)∪△Φ (D )Φ(E)Φ(F).

Следовательно, угол между окружностями     ′ ′ ′
Φ((X Y Z))  и Φ((DEF ))  равен углу между окружностями (ABC )  и (DEF )  по подобию, с другой стороны, равен углу между окружностями   ′ ′′
(X Y Z )  и (DEF )  , поскольку инверсия сохраняет углы.

Ответ:

Ошибка.
Попробуйте повторить позже

Задача 4#100664

Будем называть треугольник DEF  вписанным в треугольник ABC  , если точки D  , E  , F  находятся на сторонах BC  , AC  , AB  соответственно.

1. Докажите, что если отрезок EF  параллелен отрезку BC  , то описанные окружности треугольников AEF  и ABD  пересекаются на прямой DE  .

2. Оказалось, что CE = DE  , BF =DF  . Докажите, что точка, симметричная D  относительно EF  , лежит на пересечении описанных окружностей треугольников ABC  и AEF  .

Показать доказательство

1. Пусть G  — вторая точка пересечения описанных окружностей AEF  и ABD  . Поскольку четырехугольник AFEG  описанный, то ∠AF E =180∘− ∠AGE  . Четырехугольник ABDG  также описанный, значит ∠ABD = 180∘− ∠AGD  .

PIC

Поскольку EF ∥BC  , то ∠AF E = ∠ABD  .

Получаем, что ∠AGE = ∠AGD  . Тогда G  , E  , D  лежат на одной прямой.

2. Поскольку треугольники BFD  и DEC  равнобедренные, то ∠F BD =∠F DB  и ∠ECD = ∠EDC  . Тогда

∠EDF = 180∘− ∠BDF − ∠EDC  =180∘− ∠B − ∠C =∠BAC

Также из определения D′ (точка, симметричная D  относительно EF  ) следует, что

   ′
∠ED F =∠EDF  =∠BAC

Получается, что D ′ лежит на описанной окружности AEF  .

PIC

Из определения  ′
D как симметричной точки:

FD = FD′ = FB и D ′E = ED = EC

Значит, B,D  и D′ лежат на одной окружности с центром в F,  а C,D  и D ′ — с центром в E.  Тогда выполнены следующие равенства для вписанных и центральных углов:

     ′  1     ′  1     ′      ′
∠FBD  = 2∠AF D = 2∠AED  =∠ACD

Получаем, что  ′
D лежит и на описанной окружности ABC  .

Рулетка
Вы можете получить скидку в рулетке!