ДВИ 2015
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Подсказка 1
Достаточно много ограничений бросается сразу в глаза. Выписываем и замечаем, что логарифмы очень даже похожи, но все же разные. А можем ли сделать их одинаковыми?
Подсказка 2
Конечно! Стоит “перевернуть” один из них по соответствующему свойству (аргумент так удачно не может быть равен 1). А чему тогда должно быть равно значение этого логарифма из уравнения?
Подсказка 3
Получаем 2 уравнения с логарифмом и числом. Можем сразу действовать по определению и избавиться от логарифмов! А далее остается решить два знакомых уравнения и задачка убита.
Подсказка 4
От модулей можем избавиться рассмотрев отдельно соответствующие промежутки, а после этого интерес может вызвать только уравнение 4ой степени. А какие вообще степени в нем присутствуют? Как можем действовать с ними?
Подсказка 5
Конечно ввести замену x² = t! Теперь и у него нет шансов, т.к. относительно новой переменной уравнение стало квадратным!
Выпишем условия для определения ОДЗ. Основания обоих логарифмов и оба подлогарифмирумые выражения должны быть больше нуля, а также основания отличны от единицы. что дает нам:
Решив эти неравенства, находим, что
После замены , получается уравнение
. Если
, то
. Из ОДЗ остаётся только
. Иначе
, оба решения не подойдут из ОДЗ.
. Будем действовать аналогично. Если
, то
или
, в ОДЗ подойдёт только положительное решение. Если
, то
или
. Здесь останется только
.
Собирая все полученные ответы, получаем итоговый.
Ошибка.
Попробуйте повторить позже
Василий выехал из пункта в пункт
на велосипеде. Проехав треть пути, велосипед Василя сломался. Не теряя времени, Василий
пошел пешком обратно в пункт
. В момент поломки из пункта
выехал мотоциклист Михаил. На каком расстоянии от пункта
он
встретит Василия, если расстояние между пунктами
и
км, скорости велосипедиста, мотоциклиста и пешехода постоянны, а
Василий доберется до пункта
тогда же, когда Михаил до пункта
?
Источники:
Подсказка 1
Давайте построим график движения, будем рассматривать расстояние от пункта А относительно времени.
Подсказка 2
Строим графики движения обоих велосипедистов и далее вспоминаем про подобие треугольников!
Первое решение.
Поскольку Григорий проехал втрое больше до пункта , чем Василий прошёл до
, то его скорость втрое выше. Тогда на момент
встречи он проехал
расстояния между ними, откуда расстояние до пункта
на момент встречи будет
(км).
_________________________________________________________________________________________________________________________________________________________________________________
Второе решение.
Ломаная — график движения Василия, а отрезок
— график движения Михаила
.
Так как треугольник подобен треугольнику
, то
а так как треугольник подобен треугольнику
, то
Значит,