Физтех 2018
Ошибка.
Попробуйте повторить позже
В выпуклом четырёхугольнике проведена диагональ
и в каждый из полученных треугольников
и
вписана
окружность. Прямая, проходящая через вершину
и центр одной из окружностей, пересекает сторону
в точке
При этом
и
Аналогично, прямая, проходящая через вершину
и центр второй окружности, пересекает сторону
в точке
При этом
и
(b) Найдите длины сторон и
если дополнительно известно, что данные окружности касаются друг друга.
Пункт а), подсказка 1
Так ли проста прямая, соединяющая центр вписанной окружности с вершиной треугольника?) Просят найти AB/CD, а какие вообще отношения с AB и CD можно записать?
Пункт а), подсказка 2
Прямые BM и DN это биссектрисы треугольников! Тогда стоит воспользоваться свойством биссектрисы, чтобы связать отношениями AB с CD
Пункт б), подсказка 1
Мы уже знаем отношение AB/CD, так что хочется попробовать как-то с помощью переменных выразить AB и CD, чтобы потом решить уравнение.
Пункт б), подсказка 2
На рисунке есть окружности и касательные, на что это может намекать?
Пункт б), подсказка 3
Отрезки касательных к окружности из одной точки равны! Так что мы можем все отрезки, в том числе и AB и CD, выразить через отрезки, выходящие из вершин B и D.
(a) Так как биссектриса треугольника делит его сторону пропорционально двум другим сторонам, то
Следовательно,
(b) Обозначим точки касания окружности, вписанной в треугольник с его сторонами
через
соответственно; точки касания окружности, вписанной в треугольник
с его сторонами
— через
соответственно
(по условию точка касания со стороной
общая).
Пусть Используя равенство отрезков касательной, проведённых к окружности из одной точки, получаем
соотношения
В пункте (а) было получено, что откуда
Тогда
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!