Физтех 2017
Ошибка.
Попробуйте повторить позже
Четырёхугольник вписан в окружность радиуса
. Лучи
и
пересекаются в точке
, а лучи
и
пересекаются
в точке
. Известно, что треугольники
и
подобны (вершины не обязательно указаны в соответствующем
порядке).
(b) Пусть дополнительно известно, что окружности, вписанные в треугольники и
, касаются отрезка
в точках
и
соответственно, причём
(точка
лежит между
и
). Найдите
и площадь четырёхугольника
.
Источники:
(a) Подобие треугольников эквивалентно равенству всех их углов. Так как угол при вершине у треугольников общий, то есть два
варианта: либо
либо
Второй случай невозможен, так как
внешний угол треугольника
поэтому он равен сумме
т.е.
Тогда остаётся первый случай и
Но четырёхугольник
вписан в окружность, а значит,
откуда
Следовательно,
диаметр окружности,
(b) Из предыдущего пункта получаем , то есть точка касания вписанной окружности является серединой стороны и
равнобедренный, откуда
. Пусть
— радиус вписанной окружности
и
— точки касания её
с катетами. Из условия
и
. При этом
, запишем площадь
двумя
способами
Поскольку , то
и
. Площадь равнобедренного
равна
,
откуда
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!