Физтех 2020
Ошибка.
Попробуйте повторить позже
Бросили игральных костей (кубиков с цифрами от
до
на гранях; вероятность выпадения каждой из граней одна и та же) и
посчитали сумму выпавших чисел. Какая из вероятностей больше: того, что сумма больше
, или того, что сумма не больше
?
Источники:
Подсказка 1
Попробуем увидеть симметрию в этой задаче. Что можно сказать про вероятность получить числа на кубиках, сумма которых равна 7? (то есть x и 7-x)
Подсказка 2
Эти вероятности, очевидно, равны, так как вероятности получить любое число от 1 до 6 одинаковы. Получается, что есть равенство: P(x) = P(7 - x), то есть мы научились каждому числу на кубике предъявлять симметричную пару с такой же вероятностью. Что тогда можно сказать про 2, 3 и более бросков?
Подсказка 3
Рассмотрим два броска кубика. Пусть, выпала комбинация: {x, y}. Тогда в пару мы ей можем сопоставить пару {7-x, 7-y} и вероятность выпадения этой пары равна вероятности выпадения {x, y}. А если это обобщить не для конкретной комбинации, а для суммы чисел на кубиках? Что можно заметить?
Подсказка 4
Если за 70 бросков выпала сумма S, то эту сумму образует комбинация из 70 чисел (x₁, x₂, …, x₇₀). И, соответственно, вероятность выпадения такой комбинации равна вероятности выпадения (7-x₁, 7-x₂, …, 7-x₇₀). А что это значит для сумм?
Подсказка 5
Получается, что вероятность, что сумма равна S равна вероятности, что сумма равна 490-S. Какой вывод тогда можно сделать для нашей задачи?
Подсказка 6
P(x > 350) = P(x < 140) (вероятность того, что сумма больше 350 равна вероятности, что сумма меньше 140), т.к. все суммы бьются на пары с равными вероятности, а вероятность получить сумму 140 не равна нулю.
Результат броска кубиков можно описать набором из 70 чисел от 1 до 6. Рассмотрим какой-либо такой набор. Если каждое из чисел набора
заменить с на
, получим новый набор, состоящий из чисел от 1 до 6. При этом если сумма чисел в исходном наборе была
, то
она станет равной
То есть каждому набору с суммой
мы можем поставить в соответствие набор с суммой
Так как , то количество наборов с суммой больше 350 равно количеству наборов с суммой меньше 140. Отметим также,
что все наборы равновероятны. Значит, вероятность выбросить больше 350 равна вероятности выбросить меньше 140. Но вероятность
выбросить не больше 140 очков выходит больше выше рассмотренных, так как добавляются способы, в которых сумма составляет ровно 140
очков. Поэтому больше вероятность того, что сумма не превосходит 140.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!