Физтех до 2010 и вступительные на Физтех
Ошибка.
Попробуйте повторить позже
Решить уравнение
Подсказка 1
Согласитесь, неудобно работать с синусами и косинусами от разных аргументов, так еще и в разных степенях. Подумайте, с помощью какой формулы можно избавиться сразу и от синусов, и от квадратов?
Подсказка 2
Давайте понизим степень у синусов и сложим две полученные дроби. Тогда после приведения подобных мы слева получили сумму косинусов, а справа произведение, так еще и аргументы у них у всех разные. Какой формулой можно облегчить своё положение? Обратите внимание, что (8x-4x)/2=2x.
Подсказка 3
Давайте в левой части уравнения преобразуем сумму в произведение, теперь наше уравнение приобрело следующий вид: cos(6x)2x = cos(2x)/cos(3x). Что можно дальше сделать с ним?
Подсказка 4
Приведем всё к одному знаменателю и вынесем общий множитель. Получаем совокупность уравнений cos(2x) = 0; cos(3x)cos(6x) = 1. С первым всё понятно, а в каком случае второе уравнение будет иметь решения?
Подсказка 5
Вспомним, что функция косинуса принимает значения от -1 до 1, а значит, произведение косинусов может быть равно 1 в крайне редких случаях.
По формуле понижения степени получаем
По формуле суммы косинусов получаем
Уравнение имеет корни
а, уравнение по методу оценки имеет корни только в случае
Если то
и поэтому
будет равносильно
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!