ММО до 2010
Ошибка.
Попробуйте повторить позже
Чему может быть равно произведение нескольких различных простых чисел, если оно кратно каждому из них, уменьшенному на
Найдите все возможные значения.
Подсказка 1!
1) Давайте попробуем восстанавливать наши множители с самого начала. Важное свойство почти всех простых чисел - нечетность. Значит перемножение будет делиться на двойку!
Подсказка 2!
2) Итак, поняли, что одно из простых чисел это 2. Попробуем понять, что тогда может быть следующим по возрастанию множителем в числе. Пусть это p2. Тогда раз наше число делится на p2-1, чему может быть равно p2?
Подсказка 3!
3) Верно, p2-1 может быть только двойкой, тогда p2 это 3! Теперь попробуйте таким же раскручиванием цепочки довести ее до конца, до момента, когда все множители, которые могут получиться, будут составными!
Хотя бы одно из простых чисел нечётно, потому число кратно двум. Пусть это где
Далее будем находить числа по порядку
Число содержит делителем
может быть только
поскольку остальные делители больше
откуда оно равно
и
Подойдёт
пойдём дальше.
Число содержит делителями
могут быть только
но оба они меньше
потому
Подойдёт
Число содержит может быть равно только
поскольку
В первом случае
составное, во втором
и подходит
Пусть теперь число содержит отсюда
равно одному из чисел
где все
числа, увеличенные на один, будут составными, откуда больше четырёх простых чисел быть не может.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!