СПБГУ 2017
Ошибка.
Попробуйте повторить позже
Числа удовлетворяют условию
Найдите максимальное значение выражения
Подсказка 1
x₁² + ... + xₙ² + y₁² + ... + yₙ² — намёк на многомерную теорему Пифагора, а, значит, на многомерные векторы. Какое же пространство нам нужно рассмотреть и какие векторы?
Подсказка 2
Пространство — R^{2n} и вектор x = (x₁, ..., xₙ, y₁, ..., yₙ). Посмотрите на выражение А в условии и поймите, какие вспомогательные векторы нам понадобятся.
Подсказка 3
Именно! Это вектор a = (2,...2, -1, ..., -1) (двоек и -единиц поровну), а также вектор b = (1, ..., 1, 2, ..., 2) (тоже поровну). Какие-то похожие векторы а и b. Что же про них можно сказать?...
Подсказка 4
Точно! Они ортогональны (докажите это сами). Рассмотрим ещё один произвольный вектор c, который ортогонален a и b. Чем тогда является набор (a, b, c)?
Подсказка 5
Базисом нашего пространства! Тогда как можно представить наш вектор x?
Подсказка 6
Верно! Как линейную комбинацию векторов базиса. То есть x = na + mb + tc, где n,m,t — действительные. Вернёмся к нашему А. Запишем его с учётом наших продвижений...
Подсказка 7
А = <x,a> * <x,b> = (n<a, a> + m<b,a> + t<c, a>)*(n<a, b> + m<b,b> + t<c, b>) = nm|a|²|b|², где <> — скалярное произведение.
Подсказка 8
Самостоятельно докажите, что |x|² ≤ 2, потом сделайте оценку на nm. Тем самым вы сможете получит оценку на А. А что дальше?
Подсказка 9
Построить пример вектора x, когда достигается нужное значение. Небольшая подсказка: вектор не должен быть разнообразным...
Рассмотрим такие векторы в
Заметим, что . Значит,
, где
. Тогда
Из ортогональности
Такое значение достигается при и
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!