Тема . ПитерГор - задачи по годам

ПитерГор 2018

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела питергор - задачи по годам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#73376

Коэффициенты многочлена f(x)  — целые числа, по модулю не превосходящие 5000000. При этом каждое из уравнений f(x)= x,f(x)=2x,...,f(x)= 20x  имеет целый корень. Докажите, что f(0)= 0.

Источники: СпбОШ - 2018, задача 10.4(см. www.pdmi.ras.ru)

Подсказки к задаче

Подсказка 1

Попробуйте обратить внимание на простые числа. Понятно, что если f(0) делится на большое количество простых чисел, то оно либо равно 0, либо больше 5000000. Как мы знаем, второе невозможно.

Подсказка 2

Причём логично рассматривать простые числа, меньшие 20, потому что, используя уравнения из условия, можно манипулировать остатками.

Показать доказательство

Докажем, что f(0)  делится на все простые числа, меньшие 20,  из этого будет следовать, что либо f(0)= 0,  либо оно по модулю больше 2⋅3⋅5⋅7⋅11⋅13⋅17⋅19 >5000000.

Действительно, пусть f(0)  не кратно какому-то p,  меньшему 20.  Тогда x≡ 0 (mod p)  не может являться решением ни одного из уравнений из условия (левая часть не делится на p,  а правая часть делится).

Но очевидно, что решения уравнений f(x)= x,f(x)= 2x,...,f(x)= px  должны давать попарно различные остатки при делении на   p  при условии, что эти остатки ненулевые(иначе вычтем из первого уравнения второе, левая часть сравнима с 0 по модулю p,  а правая нет). Однако уравнений у нас p,  а возможных остатков p− 1  — противоречие.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!