Тема . ПитерГор - задачи по годам

ПитерГор 2014 и ранее

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела питергор - задачи по годам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#98720

Диагональ AC  выпуклого четырёхугольника ABCD  делится точкой пересечения диагоналей пополам. Известно, что ∠ADB  =2∠CBD.  На диагонали BD  нашлась точка K,  для которой CK = KD + AD.  Докажите, что ∠BKC  =2∠ABD.

Подсказки к задаче

Подсказка 1

В задачах, где один угол в два раза больше другого, бывает полезно найти равнобедренный треугольник, у которого угол при основании равен меньшему из указанных углов, тогда внешний угол при вершине, противоположной основанию, будет в два раза больше и, следовательно, равен большему из указанных.

Подсказка 2

На продолжении отрезка KD за точку D отложим отрезок DE, равный AD. Что можно сказать про прямые AE и BC?

Подсказка 3

Они параллельны. Как можно воспользоваться тем, что AC делится точкой пересечения диагоналей пополам?

Подсказка 4

Из этого и параллельности прямых AE и CB сразу следует, что ABCE — параллелограмм. Что при этом можно сказать про треугольник CEK?

Подсказка 5

Из указанного в условии соотношения на отрезки получим EK = КС, следовательно, EKC — равнобедренный. Как из этого следует требуемое соотношение на углы?

Показать доказательство

Пусть O  — точка пересечения диагоналей четырехугольника ABCD,  тогда AO = CO.

На продолжении отрезка KD  за точку D  отложим отрезок DE,  равный AD.  Тогда CK = KE.

PIC

Пусть ∠CBD = α.  Тогда по условию ∠ADB = 2α.  Так как ∠ADB  — внешний угол равнобедренного треугольника ADE,  то ∠AEB  =∠AED  =α = ∠CBE.  Следовательно, AE ∥BC.  Тогда ∠EAC  =∠BCA.  Таким образом, треугольники AOE  и COB  равны по второму признаку. В равных треугольниках соответственные элементы равны, в частности, AE = BC.  Тогда ABCE  — параллелограмм. Значит, ∠CEB  =∠ABD  как накрест лежащие.

Так как ∠BKC  — внешний угол равнобедренного треугольника CKE,  то

∠BKC  =2∠CEB = 2∠ABD

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!