Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг - задания по годам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90122

Найдите все значения a  , при каждом из которых неравенство

alog3x+ log1∕2x >1

имеет решения, причем среди решений нет больших 1.

Источники: ПВГ 2017

Подсказки к задаче

Подсказка 1

Левая часть выглядит немного громоздко, поэтому давайте попробуем преобразовать её. Вспомним формулу перехода к новому основанию и вынесем общую часть.

Подсказка 2

Один из множителей содержит скобку a - log₂3. Давайте разберём три случая для значений a, когда эта скобка равна нулю, меньше или больше нуля, и решим задачу.

Показать ответ и решение

С использованием формулы перехода получаем

log3x ⋅(a− log23)> 1

Если a= log 3
     2  , то решений нет.

Если a> log 3
     2  , то решение

    a−lo1g-3
x >3    2 > 1

Если a< log23  , то решение

0< x< 3a−1log23-<1
Ответ:

 (−∞;log 3)
       2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!